Main Content

pdf

확률 밀도 함수

설명

y = pdf(name,x,A)name과 분포 모수 A로 지정된 단일 모수 분포군에 대한 확률 밀도 함수(pdf)를 x의 값에서 계산하여 반환합니다.

예제

y = pdf(name,x,A,B)name과 분포 모수 AB로 지정된 2-모수 분포군에 대한 pdf를 x의 값에서 계산하여 반환합니다.

y = pdf(name,x,A,B,C)name과 분포 모수 A, B, C로 지정된 3-모수 분포군에 대한 pdf를 x의 값에서 계산하여 반환합니다.

y = pdf(name,x,A,B,C,D)name과 분포 모수 A, B, C, D로 지정된 4-모수 분포군에 대한 pdf를 x의 값에서 계산하여 반환합니다.

예제

y = pdf(pd,x)는 확률 분포 객체 pd의 pdf를 x의 값에서 계산하여 반환합니다.

예제

모두 축소

분포 이름 'Normal' 및 분포 모수를 지정하여 정규분포에 대한 pdf 값을 계산합니다.

pdf를 계산할 지점의 값을 포함하도록 입력 벡터 x를 정의합니다.

x = [-2 -1 0 1 2];

평균 μ가 1이고 표준편차 σ가 5인 정규분포에 대한 pdf 값을 계산합니다.

mu = 1;
sigma = 5;
y = pdf('Normal',x,mu,sigma)
y = 1×5

    0.0666    0.0737    0.0782    0.0798    0.0782

y의 각 값은 입력 벡터 x의 값에 대응됩니다. 예를 들어, 값 x가 1인 경우 이 값에 대응되는 pdf 값 y는 0.0798입니다.

정규분포 객체를 생성하고 이 객체를 사용하여 정규분포의 pdf 값을 계산합니다.

평균 μ가 1이고 표준편차 σ가 5인 정규분포 객체를 생성합니다.

mu = 1;
sigma = 5;
pd = makedist('Normal','mu',mu,'sigma',sigma);

pdf를 계산할 지점의 값을 포함하도록 입력 벡터 x를 정의합니다.

x = [-2 -1 0 1 2];

x의 값에서 정규분포에 대한 pdf 값을 계산합니다.

y = pdf(pd,x)
y = 1×5

    0.0666    0.0737    0.0782    0.0798    0.0782

y의 각 값은 입력 벡터 x의 값에 대응됩니다. 예를 들어, 값 x가 1인 경우 이 값에 대응되는 pdf 값 y는 0.0798입니다.

사건 발생률 모수 λ가 2인 푸아송 분포 객체를 생성합니다.

lambda = 2;
pd = makedist('Poisson','lambda',lambda);

pdf를 계산할 지점의 값을 포함하도록 입력 벡터 x를 정의합니다.

x = [0 1 2 3 4];

x의 값에서 푸아송 분포에 대한 pdf 값을 계산합니다.

y = pdf(pd,x)
y = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902

y의 각 값은 입력 벡터 x의 값에 대응됩니다. 예를 들어, 값 x가 3인 경우 이 값에 대응되는 pdf 값 y는 0.1804입니다.

또는 확률 분포 객체를 생성하지 않고 동일한 pdf 값을 계산할 수도 있습니다. pdf 함수를 사용하고 동일한 사건 발생률 모수 λ의 값을 사용하여 푸아송 분포를 지정하면 됩니다.

y2 = pdf('Poisson',x,lambda)
y2 = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902

pdf 값이 확률 분포 객체를 사용하여 계산된 값과 동일합니다.

표준 정규분포 객체를 생성합니다.

pd = makedist('Normal')
pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

x 값을 지정하고 pdf를 계산합니다.

x = -3:.1:3;
pdf_normal = pdf(pd,x);

pdf를 플로팅합니다.

plot(x,pdf_normal,'LineWidth',2)

Figure contains an axes object. The axes object contains an object of type line.

베이불 확률 분포 객체를 생성합니다.

pd = makedist('Weibull','A',5,'B',2)
pd = 
  WeibullDistribution

  Weibull distribution
    A = 5
    B = 2

x 값을 지정하고 pdf를 계산합니다.

x = 0:.1:15;
y = pdf(pd,x);

pdf를 플로팅합니다.

plot(x,y,'LineWidth',2)

Figure contains an axes object. The axes object contains an object of type line.

입력 인수

모두 축소

확률 분포 이름으로, 다음 표에 나와 있는 확률 분포 이름 중 하나로 지정됩니다.

name분포입력 모수 A입력 모수 B입력 모수 C입력 모수 D
'Beta'Beta Distributiona 첫 번째 형태 모수b 두 번째 형태 모수N/AN/A
'Binomial'Binomial Distributionn 시행 횟수p 각 시행에 대한 성공 확률N/AN/A
'BirnbaumSaunders'Birnbaum-Saunders Distributionβ 스케일 모수γ 형태 모수N/AN/A
'Burr'Burr Type XII Distributionα 스케일 모수c 첫 번째 형태 모수k 두 번째 형태 모수N/A
'Chisquare' 또는 'chi2'Chi-Square Distributionν 자유도N/AN/AN/A
'Exponential'Exponential Distributionμ 평균N/AN/AN/A
'Extreme Value' 또는 'ev'Extreme Value Distributionμ 위치 모수σ 스케일 모수N/AN/A
'F'F 분포ν1 분자의 자유도ν2 분모의 자유도N/AN/A
'Gamma'Gamma Distributiona 형태 모수b 스케일 모수N/AN/A
'Generalized Extreme Value' 또는 'gev'Generalized Extreme Value Distributionk 형태 모수σ 스케일 모수μ 위치 모수N/A
'Generalized Pareto' 또는 'gp'Generalized Pareto Distributionk 꼬리 인덱스(형태) 모수σ 스케일 모수μ 분계점(위치) 모수N/A
'Geometric'Geometric Distributionp 확률 모수N/AN/AN/A
'Half Normal' 또는 'hn'Half-Normal Distributionμ 위치 모수σ 스케일 모수N/AN/A
'Hypergeometric' 또는 'hyge'Hypergeometric Distributionm 모집단 크기k 모집단에서 원하는 특성을 가진 항목 개수n 추출된 표본 개수N/A
'InverseGaussian'역가우스 분포μ 스케일 모수λ 형태 모수N/AN/A
'Logistic'Logistic Distributionμ 평균σ 스케일 모수N/AN/A
'LogLogistic'Loglogistic Distributionμ 로그 값의 평균σ 로그 값의 스케일 모수N/AN/A
'LogNormal'로그 정규분포μ 로그 값의 평균σ 로그 값의 표준편차N/AN/A
'Loguniform'Loguniform Distributiona 하한 끝점(최솟값)b 상한 끝점(최댓값)N/AN/A
'Nakagami'Nakagami Distributionμ 형태 모수ω 스케일 모수N/AN/A
'Negative Binomial' 또는 'nbin'Negative Binomial Distributionr 성공 횟수p 단일 시행에서 성공할 확률N/AN/A
'Noncentral F' 또는 'ncf'Noncentral F Distributionν1 분자의 자유도ν2 분모의 자유도δ 비중심성 모수N/A
'Noncentral t' 또는 'nct'Noncentral t Distributionν 자유도δ 비중심성 모수N/AN/A
'Noncentral Chi-square' 또는 'ncx2'Noncentral Chi-Square Distributionν 자유도δ 비중심성 모수N/AN/A
'Normal'정규분포μ 평균 σ 표준편차N/AN/A
'Poisson'푸아송 분포λ 평균N/AN/AN/A
'Rayleigh'Rayleigh Distributionb 스케일 모수N/AN/AN/A
'Rician'Rician Distributions 비중심성 모수σ 스케일 모수N/AN/A
'Stable'Stable Distributionα 첫 번째 형태 모수β 두 번째 형태 모수γ 스케일 모수δ 위치 모수
'T'Student's t Distributionν 자유도N/AN/AN/A
'tLocationScale't Location-Scale Distributionμ 위치 모수σ 스케일 모수ν 형태 모수N/A
'Uniform'Uniform Distribution (Continuous)a 하한 끝점(최솟값)b 상한 끝점(최댓값)N/AN/A
'Discrete Uniform' 또는 'unid'Uniform Distribution (Discrete)n 관측 가능 최댓값N/AN/AN/A
'Weibull' 또는 'wbl'Weibull Distributiona 스케일 모수b 형태 모수N/AN/A

예: 'Normal'

pdf를 계산할 지점의 값으로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 지정됩니다.

입력 인수 x, A, B, C, D 중 하나 이상이 배열인 경우 배열 크기가 서로 같아야 합니다. 이 경우, pdf가 각각의 스칼라 입력값을 배열 입력값과 동일한 크기의 상수 배열로 확장합니다. 각 분포에 대한 A, B, C, D의 정의는 name 항목을 참조하십시오.

예: [-1,0,3,4]

데이터형: single | double

첫 번째 확률 분포 모수로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 지정됩니다.

입력 인수 x, A, B, C, D 중 하나 이상이 배열인 경우 배열 크기가 서로 같아야 합니다. 이 경우, pdf가 각각의 스칼라 입력값을 배열 입력값과 동일한 크기의 상수 배열로 확장합니다. 각 분포에 대한 A, B, C, D의 정의는 name 항목을 참조하십시오.

데이터형: single | double

두 번째 확률 분포 모수로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 지정됩니다.

입력 인수 x, A, B, C, D 중 하나 이상이 배열인 경우 배열 크기가 서로 같아야 합니다. 이 경우, pdf가 각각의 스칼라 입력값을 배열 입력값과 동일한 크기의 상수 배열로 확장합니다. 각 분포에 대한 A, B, C, D의 정의는 name 항목을 참조하십시오.

데이터형: single | double

세 번째 확률 분포 모수로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 지정됩니다.

입력 인수 x, A, B, C, D 중 하나 이상이 배열인 경우 배열 크기가 서로 같아야 합니다. 이 경우, pdf가 각각의 스칼라 입력값을 배열 입력값과 동일한 크기의 상수 배열로 확장합니다. 각 분포에 대한 A, B, C, D의 정의는 name 항목을 참조하십시오.

데이터형: single | double

네 번째 확률 분포 모수로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 지정됩니다.

입력 인수 x, A, B, C, D 중 하나 이상이 배열인 경우 배열 크기가 서로 같아야 합니다. 이 경우, pdf가 각각의 스칼라 입력값을 배열 입력값과 동일한 크기의 상수 배열로 확장합니다. 각 분포에 대한 A, B, C, D의 정의는 name 항목을 참조하십시오.

데이터형: single | double

확률 분포로, 다음 표에 나와 있는 확률 분포 객체 중 하나로 지정됩니다.

분포 객체확률 분포 객체를 만드는 함수 또는 앱
BetaDistributionmakedist, fitdist, 분포 피팅기
BinomialDistributionmakedist, fitdist, 분포 피팅기
BirnbaumSaundersDistributionmakedist, fitdist, 분포 피팅기
BurrDistributionmakedist, fitdist, 분포 피팅기
ExponentialDistributionmakedist, fitdist, 분포 피팅기
ExtremeValueDistributionmakedist, fitdist, 분포 피팅기
GammaDistributionmakedist, fitdist, 분포 피팅기
GeneralizedExtremeValueDistributionmakedist, fitdist, 분포 피팅기
GeneralizedParetoDistributionmakedist, fitdist, 분포 피팅기
HalfNormalDistributionmakedist, fitdist, 분포 피팅기
InverseGaussianDistributionmakedist, fitdist, 분포 피팅기
KernelDistributionfitdist, 분포 피팅기
LogisticDistributionmakedist, fitdist, 분포 피팅기
LoglogisticDistributionmakedist, fitdist, 분포 피팅기
LognormalDistributionmakedist, fitdist, 분포 피팅기
LoguniformDistributionmakedist
MultinomialDistributionmakedist
NakagamiDistributionmakedist, fitdist, 분포 피팅기
NegativeBinomialDistributionmakedist, fitdist, 분포 피팅기
NormalDistributionmakedist, fitdist, 분포 피팅기
꼬리에서 일반화 파레토 분포를 갖는 조각별 분포paretotails
PiecewiseLinearDistributionmakedist
PoissonDistributionmakedist, fitdist, 분포 피팅기
RayleighDistributionmakedist, fitdist, 분포 피팅기
RicianDistributionmakedist, fitdist, 분포 피팅기
StableDistributionmakedist, fitdist, 분포 피팅기
tLocationScaleDistributionmakedist, fitdist, 분포 피팅기
TriangularDistributionmakedist
UniformDistributionmakedist
WeibullDistributionmakedist, fitdist, 분포 피팅기

출력 인수

모두 축소

pdf 값으로, 스칼라 값 또는 스칼라 값으로 구성된 배열로 반환됩니다. 필요한 스칼라 확장을 수행한 후 yx와 크기가 같아집니다. y의 각 요소는 분포 모수(A, B, C, D)에서 대응되는 요소로 지정된 분포 또는 확률 분포 객체(pd)로 지정된 분포의 pdf 값으로, x의 대응되는 요소에서 계산됩니다.

대체 기능

  • pdf는 분포 이름 name으로 지정한 분포를 받거나 확률 분포 객체 pd를 받는 일반 함수입니다. 분포 전용 함수(정규분포의 경우 normpdf, 이항분포의 경우 binopdf)를 사용하는 것이 더 빠릅니다. 분포 전용 함수 목록은 Supported Distributions 항목을 참조하십시오.

  • 확률 분포 함수 앱을 사용하면 확률 분포에 대한 누적 분포 함수(cdf) 또는 확률 밀도 함수(pdf)의 대화형 방식 플롯을 생성할 수 있습니다.

확장 기능

버전 내역

R2006a 이전에 개발됨