이 페이지의 최신 내용은 아직 번역되지 않았습니다. 최신 내용은 영문으로 볼 수 있습니다.

차원 축소 및 특징 추출

PCA, 요인 분석, 특징 선택, 특징 추출 등

특징 변환 기법은 데이터를 새 특징으로 변환하여 데이터의 차원 수를 줄입니다. 데이터에 categorical형 변수가 있는 경우와 같이 변수 변환이 가능하지 않은 경우 특징 선택 기법이 더 적합합니다. 특정적으로 최소 제곱 피팅에 적합한 특징 선택 기법에 대한 자세한 내용은 단계적 회귀 항목을 참조하십시오.

함수

모두 확장

fscncaFeature selection using neighborhood component analysis for classification
fsrncaFeature selection using neighborhood component analysis for regression
sequentialfsSequential feature selection
relieffRank importance of predictors using ReliefF or RReliefF algorithm
ricaFeature extraction by using reconstruction ICA
sparsefiltFeature extraction by using sparse filtering
transformTransform predictors into extracted features
tsnet-Distributed Stochastic Neighbor Embedding
barttestBartlett’s test
canoncorrCanonical correlation
pca원시 데이터에 대한 주성분 분석
pcacovPrincipal component analysis on covariance matrix
pcaresResiduals from principal component analysis
ppcaProbabilistic principal component analysis
factoranFactor analysis
rotatefactorsRotate factor loadings
nnmfNonnegative matrix factorization
cmdscaleClassical multidimensional scaling
mahalMahalanobis distance
mdscaleNonclassical multidimensional scaling
pdist관측값 쌍 간의 쌍별(Pairwise) 거리
squareformFormat distance matrix
procrustesProcrustes analysis

클래스

FeatureSelectionNCAClassificationFeature selection for classification using neighborhood component analysis (NCA)
FeatureSelectionNCARegressionFeature selection for regression using neighborhood component analysis (NCA)

객체

ReconstructionICAFeature extraction by reconstruction ICA
SparseFilteringFeature extraction by sparse filtering

도움말 항목

특징 선택

Robust Feature Selection Using NCA for Regression

Perform feature selection that is robust to outliers using a custom robust loss function in NCA.

Neighborhood Component Analysis (NCA) Feature Selection

Neighborhood component analysis (NCA) is a non-parametric and embedded method for selecting features with the goal of maximizing prediction accuracy of regression and classification algorithms.

Feature Selection

Learn about feature selection algorithms, such as sequential feature selection.

특징 추출

Feature Extraction Workflow

This example shows a complete workflow for feature extraction from image data.

Extract Mixed Signals

This example shows how to use rica to disentangle mixed audio signals.

Feature Extraction

Feature extraction is a set of methods to extract high-level features from data.

t-SNE 다차원 시각화

Visualize High-Dimensional Data Using t-SNE

This example shows how t-SNE creates a useful low-dimensional embedding of high-dimensional data.

tsne Settings

This example shows the effects of various tsne settings.

t-SNE

t-SNE is a method for visualizing high-dimensional data by nonlinear reduction to two or three dimensions, while preserving some features of the original data.

t-SNE Output Function

Output function description and example for t-SNE.

PCA와 정준 상관

Analyze Quality of Life in U.S. Cities Using PCA

Perform a weighted principal components analysis and interpret the results.

Partial Least Squares Regression and Principal Components Regression

This example shows how to apply Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR), and discusses the effectiveness of the two methods.

주성분 분석(PCA)

주성분 분석은 상관관계가 있는 여러 변수를 원래 변수의 일차 결합인 새로운 변수의 집합으로 교체하여 데이터의 차원 수를 줄입니다.

요인 분석

Analyze Stock Prices Using Factor Analysis

Use factor analysis to investigate whether companies within the same sector experience similar week-to-week changes in stock prices.

Factor Analysis

Factor analysis is a way to fit a model to multivariate data to estimate interdependence of measured variables on a smaller number of unobserved (latent) factors.

음이 아닌 행렬 분해

Perform Nonnegative Matrix Factorization

Perform nonnegative matrix factorization using the multiplicative and alternating least-squares algorithms.

Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space.

다차원 스케일링

Classical Multidimensional Scaling

Use cmdscale to perform classical (metric) multidimensional scaling, also known as principal coordinates analysis.

Multidimensional Scaling

Multidimensional scaling allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of data in a small number of dimensions.

Nonclassical and Nonmetric Multidimensional Scaling

Perform nonclassical multidimensional scaling using mdscale.

프로크루스테스 분석

Compare Handwritten Shapes Using Procrustes Analysis

Use Procrustes analysis to compare two handwritten numerals.

Procrustes Analysis

Procrustes analysis minimizes the differences in location between compared landmark data using the best shape-preserving Euclidian transformations