차원 축소 및 특징 추출
PCA, 인자 분석, 특징 선택, 특징 추출 등
특징 변환 기법은 데이터를 새 특징으로 변환하여 데이터의 차원 수를 줄입니다. 데이터에 categorical형 변수가 있는 경우와 같이 변수 변환이 가능하지 않은 경우 특징 선택 기법이 더 적합합니다. 특정적으로 최소제곱 피팅에 적합한 특징 선택 기법에 대한 자세한 내용은 단계적 회귀 항목을 참조하십시오.
라이브 편집기 작업
차원 축소 | Reduce dimensionality using Principal Component Analysis (PCA) in Live Editor (R2022b 이후) |
함수
객체
도움말 항목
특징 선택
- Introduction to Feature Selection
Learn about feature selection algorithms and explore the functions available for feature selection. - Sequential Feature Selection
This topic introduces sequential feature selection and provides an example that selects features sequentially using a custom criterion and thesequentialfs
function. - Neighborhood Component Analysis (NCA) Feature Selection
Neighborhood component analysis (NCA) is a non-parametric method for selecting features with the goal of maximizing prediction accuracy of regression and classification algorithms.
- Regularize Discriminant Analysis Classifier
Make a more robust and simpler model by removing predictors without compromising the predictive power of the model. - Select Predictors for Random Forests
Select split-predictors for random forests using interaction test algorithm.
특징 추출
- Feature Extraction
Feature extraction is a set of methods to extract high-level features from data. - Feature Extraction Workflow
This example shows a complete workflow for feature extraction from image data. - Extract Mixed Signals
This example shows how to userica
to disentangle mixed audio signals.
t-SNE 다차원 시각화
- t-SNE
t-SNE is a method for visualizing high-dimensional data by nonlinear reduction to two or three dimensions, while preserving some features of the original data. - Visualize High-Dimensional Data Using t-SNE
This example shows how t-SNE creates a useful low-dimensional embedding of high-dimensional data. - tsne Settings
This example shows the effects of varioustsne
settings. - t-SNE Output Function
Output function description and example for t-SNE.
PCA와 정준 상관
- 주성분 분석(PCA)
주성분 분석은 상관관계가 있는 여러 변수를 원래 변수의 선형 결합인 새로운 변수의 집합으로 교체하여 데이터의 차원 수를 줄입니다. - Analyze Quality of Life in U.S. Cities Using PCA
Perform a weighted principal components analysis and interpret the results.
인자 분석
- Factor Analysis
Factor analysis is a way to fit a model to multivariate data to estimate interdependence of measured variables on a smaller number of unobserved (latent) factors. - Analyze Stock Prices Using Factor Analysis
Use factor analysis to investigate whether companies within the same sector experience similar week-to-week changes in stock prices. - Perform Factor Analysis on Exam Grades
This example shows how to perform factor analysis using Statistics and Machine Learning Toolbox™.
음이 아닌 행렬 분해
- Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. - Perform Nonnegative Matrix Factorization
Perform nonnegative matrix factorization using the multiplicative and alternating least-squares algorithms.
다차원 스케일링
- Multidimensional Scaling
Multidimensional scaling allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of data in a small number of dimensions. - Classical Multidimensional Scaling
Usecmdscale
to perform classical (metric) multidimensional scaling, also known as principal coordinates analysis. - Classical Multidimensional Scaling Applied to Nonspatial Distances
This example shows how to perform classical multidimensional scaling using thecmdscale
function in Statistics and Machine Learning Toolbox™. - Nonclassical Multidimensional Scaling
This example shows how to visualize dissimilarity data using nonclassical forms of multidimensional scaling (MDS). - Nonclassical and Nonmetric Multidimensional Scaling
Perform nonclassical multidimensional scaling usingmdscale
.
프로크루스테스 분석
- Compare Handwritten Shapes Using Procrustes Analysis
Use Procrustes analysis to compare two handwritten numerals.