This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Perform Nonnegative Matrix Factorization

This example shows how to perform nonnegative matrix factorization.

Load the sample data.

load moore
X = moore(:,1:5);
rng('default'); % For reproducibility

Compute a rank-two approximation of X using a multiplicative update algorithm that begins from five random initial values for W and H.

opt = statset('MaxIter',10,'Display','final');
[W0,H0] = nnmf(X,2,'replicates',5,'options',opt,'algorithm','mult');
    rep	   iteration	   rms resid	  |delta x|
      1	      10	     358.296	  0.00190554
      2	      10	     78.3556	 0.000351747
      3	      10	     230.962	   0.0172839
      4	      10	     326.347	  0.00739552
      5	      10	     361.547	  0.00705539
Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good choice when using 'replicates' to find W and H from multiple random starting values.

Now perform the factorization using alternating least-squares algorithm, which converges faster and more consistently. Run 100 times more iterations, beginning from the initial W0 and H0 identified above.

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'w0',W0,'h0',H0,'options',opt,'algorithm','als');
    rep	   iteration	   rms resid	  |delta x|
      1	       2	     77.5315	 0.000830334
Final root mean square residual = 77.5315

The two columns of W are the transformed predictors. The two rows of H give the relative contributions of each of the five predictors in X to the predictors in W. Display H.

H = 2×5

    0.0835    0.0190    0.1782    0.0072    0.9802
    0.0559    0.0250    0.9969    0.0085    0.0497

The fifth predictor in X (weight 0.9802) strongly influences the first predictor in W. The third predictor in X (weight 0.9969) strongly influences the second predictor in W.

Visualize the relative contributions of the predictors in X with biplot, showing the data and original variables in the column space of W.

axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

See Also

Related Topics