Main Content

이 페이지의 최신 내용은 아직 번역되지 않았습니다. 최신 내용은 영문으로 볼 수 있습니다.

커널 분포

커널 함수를 기반으로 하여 평활화된 분포 피팅 및 분포 실행

함수

fitdist데이터에 확률 분포 객체 피팅하기
distributionFitterOpen Distribution Fitter app
ksdensity일변량 데이터와 이변량 데이터에 대한 커널 평활화 함수 추정값
mvksdensityKernel smoothing function estimate for multivariate data
cdf누적 분포 함수
icdfInverse cumulative distribution function
iqrInterquartile range
meanMean of probability distribution
medianMedian of probability distribution
negloglikNegative loglikelihood of probability distribution
pdf확률 밀도 함수
random난수
stdStandard deviation of probability distribution
truncateTruncate probability distribution object
varVariance of probability distribution

객체

KernelDistributionKernel probability distribution object

도움말 항목

Kernel Distribution

A kernel distribution is a nonparametric representation of the probability density function of a random variable.

Nonparametric and Empirical Probability Distributions

Estimate a probability density function or a cumulative distribution function from sample data.

Fit Kernel Distribution Object to Data

This example shows how to fit a kernel probability distribution object to sample data.

Fit Kernel Distribution Using ksdensity

This example shows how to generate a kernel probability density estimate from sample data using the ksdensity function.

Fit Distributions to Grouped Data Using ksdensity

This example shows how to fit kernel distributions to grouped sample data using the ksdensity function.