이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
점진적 학습
점진적 학습(또는 온라인 학습)에는 데이터 스트림에서 들어오는 데이터 처리가 포함되는데, 예측 변수의 분포, 목적 함수의 여러 특성, 심지어 관측값에 레이블이 지정되었는지 여부에 대한 정보가 거의 또는 전혀 제공되지 않을 수 있습니다. 점진적 학습 문제는 레이블이 지정된 데이터가 충분히 있어서 이를 사용해 모델에 피팅하고, 교차 검증을 수행하여 하이퍼파라미터를 조정하고, 예측 변수 분포 특징을 추론하는 기존의 머신러닝 방법과 대조됩니다.
점진적 학습에는 점진적 모델로 구성된 모델이 필요합니다. incrementalClassificationLinear
와 같은 객체를 호출하여 사용자가 직접 점진적 모델을 만들어 구성할 수도 있고 incrementalLearner
를 사용하여 전통적으로 훈련된 지원 모델을 점진적 학습기로 변환할 수도 있습니다. 모델을 구성하고 데이터 스트림을 설정한 후에는 들어오는 데이터 청크에 대해 점진적 모델을 피팅하고 모델의 예측 성능을 추적할 수 있으며 이 두 작업을 동시에 수행할 수도 있습니다.
자세한 내용은 Incremental Learning Overview 항목을 참조하십시오.
또한 분류 오차와 같은 개념 데이터의 드리프트를 점진적으로 모니터링할 수도 있습니다. 먼저 incrementalConceptDriftDetector
를 사용하여 드리프트 탐지기를 구성해야 합니다. 데이터 스트림을 설정한 후 detectdrift
를 사용하여 드리프트 탐지기를 업데이트하여 드리프트를 검사할 수 있습니다. 자세한 내용은 도움말 페이지를 참조하십시오.
블록
IncrementalClassificationLinear Predict | Classify observations using incremental linear classification model (R2023b 이후) |
IncrementalClassificationLinear Fit | Fit incremental linear binary classification model (R2023b 이후) |
IncrementalClassificationECOC Predict | Classify observations using incremental ECOC classification model (R2024a 이후) |
IncrementalClassificationECOC Fit | Fit incremental ECOC classification model (R2024a 이후) |
Update Metrics | Update performance metrics in incremental learning model given new data (R2023b 이후) |
함수
객체
도움말 항목
- Incremental Learning Overview
Discover fundamental concepts about incremental learning, including incremental learning objects, functions, and workflows.
- Configure Incremental Learning Model
Prepare an incremental learning model for incremental performance evaluation and training on a data stream.
- Implement Incremental Learning for Classification Using Succinct Workflow
Use the succinct workflow to implement incremental learning for binary classification with prequential evaluation.
- Implement Incremental Learning for Classification Using Flexible Workflow
Use a flexible workflow to implement incremental learning for binary classification with prequential evaluation.
- Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification Learner
Train a logistic regression model using the Classification Learner app, and then initialize an incremental model for binary classification using the estimated coefficients.
- Perform Conditional Training During Incremental Learning
Use the flexible workflow to implement conditional training during incremental learning with a naive Bayes multiclass classification model.
- Perform Text Classification Incrementally
This example shows how to incrementally train a model to classify documents based on word frequencies in the documents; a bag-of-words model.
- Incremental Learning with Naive Bayes and Heterogeneous Data
This example shows how to prepare heterogeneous predictor data, containing real-valued and categorical measurements, for incremental learning using a naive Bayes classifier.
- Monitor Equipment State of Health Using Drift-Aware Learning
This example shows how to automate the process of monitoring the state of health for a cooling system using an incremental drift-aware learning model and Streaming Data Framework for MATLAB® Production Server™.