Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

2차 계획법과 원뿔 계획법

2차 목적 함수와 선형 제약 조건 또는 원뿔 제약 조건을 갖는 문제 풀기

최적화 문제를 풀기 시작하기 전에 먼저 문제 기반 접근법과 솔버 기반 접근법 중 적절한 접근법을 선택해야 합니다. 자세한 내용은 먼저 문제 기반 접근법 또는 솔버 기반 접근법 중 선택하기 항목을 참조하십시오.

문제 기반 접근법에서는 문제 변수를 생성한 후 기호화된 변수로 목적 함수와 제약 조건을 나타냅니다. 문제 기반으로 수행할 절차를 보려면 문제 기반 최적화 워크플로 항목을 참조하십시오. 결과로 생성된 문제를 풀려면 solve를 사용하십시오.

솔버 기반으로 수행할 절차를 보려면 솔버 기반 최적화 문제 설정 항목을 참조하십시오. 목적 함수와 제약 조건을 정의하고 적합한 솔버를 선택하는 등의 작업이 설명되어 있습니다. 결과로 생성된 문제를 풀려면 quadprog 또는 coneprog를 사용하십시오.

함수

모두 확장

evaluate문제의 최적화 표현식이나 목적 함수 및 제약 조건의 평가
infeasibilityConstraint violation at a point
optimproblem최적화 문제 만들기
optimvar최적화 변수 만들기
solve최적화 문제 또는 방정식 문제 풀기
coneprogSecond-order cone programming solver (R2020b 이후)
optim.coder.infboundInfinite bound support for code generation (R2022b 이후)
optimwarmstartCreate warm start object (R2021a 이후)
quadprog2차 계획법
secondorderconeCreate second-order cone constraint (R2020b 이후)

라이브 편집기 작업

최적화라이브 편집기에서 방정식을 최적화하거나 풉니다. (R2020b 이후)

객체

SecondOrderConeConstraint2차 원뿔 제약 조건 객체 (R2020b 이후)

도움말 항목

문제 기반 2차 계획법

솔버 기반 2차 계획법

문제 기반 2차 원뿔 계획법

솔버 기반 2차 원뿔 계획법

코드 생성

문제 기반 알고리즘

알고리즘과 옵션