이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
상관 모델
상관 분석을 사용하여 획득한 임펄스 응답 모델
앱
System Identification | 측정된 데이터에서 동적 시스템의 모델 식별하기 |
함수
cra | Estimate impulse response using input/output data prewhitening before correlation analysis |
impulseest | Nonparametric impulse response estimation |
era | Estimate state-space model from impulse response data using Eigensystem Realization Algorithm (ERA) |
getpvec | Obtain model parameters and associated uncertainty data |
setpvec | Modify values of model parameters |
impulseestOptions | Options set for impulseest |
예제 및 방법
- Estimate Impulse-Response Models Using System Identification App
Estimate in the app using time-domain correlation analysis.
- Estimate Impulse-Response Models at the Command Line
Use
impulseest
command to estimate using correlation analysis. - Compute Response Values
Obtain numerical impulse- and step-response vectors as a function of time.
- Identify Delay Using Transient-Response Plots
You can use transient-response plots to estimate the input delay, or dead time, of linear systems.
개념
- What Is Time-Domain Correlation Analysis?
Time-domain correlation analysis refers to non-parametric estimation of the impulse response of dynamic systems as a finite impulse response (FIR) model from the data.
- Data Supported by Correlation Analysis
Characteristics of data supported for estimation of impulse-response models.
- Correlation Analysis Algorithm
Correlation analysis refers to methods that estimate the impulse response of a linear model, without specific assumptions about model orders.