Main Content

선형 모델 식별 기본 사항

선형 모델 식별, 적합한 모델 구조 선택, 모델 객체 구조 생성과 수정, 정규화된 추정 사용을 위한 필수 정보

선형 모델은 System Identification Toolbox™를 사용하여 식별할 수 있는 가장 단순한 모델입니다. 선형 모델이 시스템 동특성을 완전히 나타내기에 충분한 경우 선형 모델 식별을 사용합니다. 선형 모델을 식별할 때는 시간 영역 또는 주파수 영역 입력-출력 데이터와 상태공간 모델이나 전달 함수 모델 같은 모델 구조로 시작할 수 있습니다. 이 툴박스는 측정된 출력과, 입력 데이터에 대해 시뮬레이션된 모델 응답 간의 차이를 최소화하기 위해 모델의 자유 파라미터를 반복해서 조정합니다. 이 툴박스를 사용하여 다음과 같은 작업을 수행할 수 있습니다.

  • 특정 모델 구조를 사용하여 선형 모델 추정.

  • 블랙박스 모델링 방식 사용 및 데이터에 가장 적합한 모델 구조 탐색.

  • 예비 선형 모델을 생성하고, 추정할 모델의 파라미터를 초기화하는 데 해당 모델 사용.

  • 알려진 파라미터를 특정 값으로 고정하여 시스템에 대한 지식을 모델에 주입.

  • 정규화된 추정을 사용해 모델 유연성을 제약하는 방식으로 모델의 불확실성 축소.

도움말 항목

선형 모델 식별하기

모델 구조 선택하기

모델 객체 구조 및 제약 조건

  • Linear Model Structures
    Linear models in System Identification Toolbox take the form of model objects that are linear model structures. You can construct model objects directly or use estimation commands to both construct and estimate models. You can also modify the properties of existing model objects.
  • Imposing Constraints on Model Parameter Values
    Constrain the adjustments that the estimation algorithm can make to individual model parameters by using the Structure property of the mode object.

정규화

추가 항목