Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

fullyConnectedLayer

완전 연결 계층

설명

완전 연결 계층은 입력값에 가중치 행렬을 곱한 다음 편향 벡터를 더합니다.

생성

설명

layer = fullyConnectedLayer(outputSize)는 완전 연결 계층을 반환하고 OutputSize 속성을 지정합니다.

layer = fullyConnectedLayer(outputSize,Name,Value)는 이름-값 쌍을 사용하여 선택 사항인 파라미터 및 초기화, 학습률 및 정규화, Name 속성을 설정합니다. 예를 들어, fullyConnectedLayer(10,'Name','fc1')은 출력 크기가 10이고 이름이 'fc1'인 완전 연결 계층을 만듭니다. 여러 개의 이름-값 쌍을 지정할 수 있습니다. 각 속성 이름을 작은따옴표로 묶습니다.

예제

속성

모두 확장

완전 연결

완전 연결 계층의 출력 크기로, 양의 정수로 지정됩니다.

예: 10

완전 연결 계층의 입력 크기로, 양의 정수 또는 'auto'로 지정됩니다. InputSize'auto'이면 훈련 중에 입력 크기가 자동으로 결정됩니다.

파라미터 및 초기화

가중치를 초기화하는 함수로, 다음 중 하나로 지정됩니다.

  • 'glorot' – Glorot 이니셜라이저[1](Xavier 이니셜라이저라고도 함)를 사용하여 가중치를 초기화합니다. Glorot 이니셜라이저는 평균이 0이고 분산이 2/(InputSize + OutputSize)인 균등분포에서 독립적으로 샘플링합니다.

  • 'he' – He 이니셜라이저[2]를 사용하여 가중치를 초기화합니다. He 이니셜라이저는 평균이 0이고 분산이 2/InputSize인 정규분포에서 샘플링합니다.

  • 'orthogonal' – 단위 정규분포에서 샘플링된 확률 행렬 Z에 대한 Z = QR의 QR 분해로 주어지는 직교 행렬 Q를 사용하여 입력 가중치를 초기화합니다[3].

  • 'narrow-normal' – 평균이 0이고 표준편차가 0.01인 정규분포에서 독립적으로 샘플링하여 가중치를 초기화합니다.

  • 'zeros' – 가중치를 0으로 초기화합니다.

  • 'ones' – 가중치를 1로 초기화합니다.

  • 함수 핸들 – 사용자 지정 함수를 사용하여 가중치를 초기화합니다. 함수 핸들을 지정할 경우, 함수는 weights = func(sz) 형식이 되어야 합니다. 여기서 sz는 가중치의 크기입니다. 예제는 Specify Custom Weight Initialization Function 항목을 참조하십시오.

계층은 Weights 속성이 비어 있는 경우에만 가중치를 초기화합니다.

데이터형: char | string | function_handle

편향을 초기화하는 함수로, 다음 값 중 하나로 지정됩니다.

  • "zeros" — 편향을 0으로 초기화합니다.

  • "ones" — 편향을 1로 초기화합니다.

  • "narrow-normal" — 평균이 0이고 표준편차가 0.01인 정규분포에서 독립적으로 샘플링하여 편향을 초기화합니다.

  • 함수 핸들 — 사용자 지정 함수를 사용하여 편향을 초기화합니다. 함수 핸들을 지정할 경우, 함수는 bias = func(sz) 형식을 가져야 합니다. 여기서 sz는 편향의 크기입니다.

계층은 Bias 속성이 비어 있는 경우에만 편향을 초기화합니다.

데이터형: char | string | function_handle

계층 가중치로, 행렬로 지정됩니다.

계층 가중치는 학습 가능한 파라미터입니다. 계층의 Weights 속성을 사용하여 가중치의 초기값을 직접 지정할 수 있습니다. 신경망을 훈련시킬 때 계층의 Weights 속성이 비어 있지 않으면 trainnet 함수 및 trainNetwork 함수는 Weights 속성을 초기값으로 사용합니다. Weights 속성이 비어 있으면 계층의 WeightsInitializer 속성으로 지정된 이니셜라이저가 사용됩니다.

훈련 시점에 WeightsOutputSize×InputSize 행렬입니다.

데이터형: single | double

계층 편향으로, 행렬로 지정됩니다.

계층 편향은 학습 가능한 파라미터입니다. 신경망을 훈련시킬 때 Bias가 비어 있지 않으면 trainnettrainNetwork 함수는 Bias 속성을 초기값으로 사용합니다. Bias가 비어 있으면 BiasInitializer로 지정된 이니셜라이저가 사용됩니다.

훈련 시점에 BiasOutputSize×1 행렬입니다.

데이터형: single | double

학습률 및 정규화

가중치에 대한 학습률 인자로, 음이 아닌 스칼라로 지정됩니다.

이 인자에 전역 학습률을 곱하여 이 계층의 가중치에 대한 학습률이 결정됩니다. 예를 들어, WeightLearnRateFactor2인 경우, 이 계층의 가중치에 대한 학습률은 현재 전역 학습률의 2배입니다. trainingOptions 함수를 사용하여 지정한 설정을 기반으로 전역 학습률이 결정됩니다.

데이터형: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

편향에 대한 학습률 인자로, 음이 아닌 스칼라로 지정됩니다.

이 인자에 전역 학습률을 곱하여 이 계층의 편향에 대한 학습률이 결정됩니다. 예를 들어, BiasLearnRateFactor2인 경우, 이 계층의 편향에 대한 학습률은 현재 전역 학습률의 2배입니다. trainingOptions 함수를 사용하여 지정한 설정을 기반으로 전역 학습률이 결정됩니다.

데이터형: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

가중치에 대한 L2 정규화 인자로, 음이 아닌 스칼라로 지정됩니다.

이 인자에 전역 L2 정규화 인자를 곱하여 이 계층의 가중치에 대한 L2 정규화가 결정됩니다. 예를 들어, WeightL2Factor2인 경우, 이 계층의 가중치에 대한 L2 정규화는 전역 L2 정규화 인자의 2배입니다. 전역 L2 정규화 인자는 trainingOptions 함수를 사용하여 지정할 수 있습니다.

데이터형: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

편향에 대한 L2 정규화 인자로, 음이 아닌 스칼라로 지정됩니다.

이 인자에 전역 L2 정규화 인자를 곱하여 이 계층의 편향에 대한 L2 정규화가 결정됩니다. 예를 들어, BiasL2Factor2인 경우, 이 계층의 편향에 대한 L2 정규화는 전역 L2 정규화 인자의 2배입니다. trainingOptions 함수를 사용하여 지정한 설정을 기반으로 전역 L2 정규화 인자가 결정됩니다.

데이터형: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

계층

계층 이름으로, 문자형 벡터 또는 string형 스칼라로 지정됩니다. Layer 배열 입력값에 대해 trainnetdlnetwork 함수는 이름이 ""인 계층에 자동으로 이름을 할당합니다.

FullyConnectedLayer 객체는 이 속성을 문자형 벡터로 저장합니다.

데이터형: char | string

읽기 전용 속성입니다.

계층에 대한 입력값의 개수로, 1로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: double

읽기 전용 속성입니다.

입력값 이름으로, {'in'}으로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: cell

읽기 전용 속성입니다.

계층의 출력값 개수로, 1로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: double

읽기 전용 속성입니다.

출력값 이름으로, {'out'}으로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: cell

예제

모두 축소

출력 크기가 10이고 이름이 fc1인 완전 연결 계층을 만듭니다.

layer = fullyConnectedLayer(10,Name="fc1")
layer = 
  FullyConnectedLayer with properties:

          Name: 'fc1'

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

Use properties method to see a list of all properties.

Layer 배열에 완전 연결 계층을 포함시킵니다.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input       28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution   20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU              ReLU
     4   ''   2-D Max Pooling   2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected   10 fully connected layer
     6   ''   Softmax           softmax

가중치 이니셜라이저 함수와 편향 이니셜라이저 함수를 지정하려면 각각 WeightsInitializer 속성과 BiasInitializer 속성을 사용하십시오. 가중치와 편향을 직접 지정하려면 각각 Weights 속성과 Bias 속성을 사용하십시오.

초기화 함수 지정하기

출력 크기가 10인 완전 연결 계층을 만들고 가중치 이니셜라이저를 He 이니셜라이저로 지정합니다.

outputSize = 10;
layer = fullyConnectedLayer(outputSize,'WeightsInitializer','he')
layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

Use properties method to see a list of all properties.

Weights 속성과 Bias 속성은 비어 있는 것을 볼 수 있습니다. 이러한 속성은 지정된 초기화 함수를 사용하여 훈련 시점에 초기화됩니다.

사용자 지정 초기화 함수 지정하기

가중치와 편향에 대해 자신만의 고유한 초기화 함수를 지정하려면 WeightsInitializer 속성과 BiasInitializer 속성을 함수 핸들로 설정하십시오. 이러한 속성에 대해, 가중치와 편향의 크기를 입력값으로 받고 초기화된 값을 출력하는 함수 핸들을 지정합니다.

출력 크기가 10인 완전 연결 계층을 만들고, 표준편차가 0.0001인 가우스 분포에서 가중치와 편향을 샘플링하는 이니셜라이저를 지정합니다.

outputSize = 10;
weightsInitializationFcn = @(sz) rand(sz) * 0.0001;
biasInitializationFcn = @(sz) rand(sz) * 0.0001;

layer = fullyConnectedLayer(outputSize, ...
    'WeightsInitializer',@(sz) rand(sz) * 0.0001, ...
    'BiasInitializer',@(sz) rand(sz) * 0.0001)
layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

Use properties method to see a list of all properties.

이번에도 Weights 속성과 Bias 속성은 비어 있습니다. 이러한 속성은 지정된 초기화 함수를 사용하여 훈련 시점에 초기화됩니다.

가중치와 편향을 직접 지정하기

출력 크기가 10인 완전 연결 계층을 만들고, MAT 파일 FCWeights.mat에서 가중치와 편향을 각각 Wb로 설정합니다.

outputSize = 10;
load FCWeights

layer = fullyConnectedLayer(outputSize, ...
    'Weights',W, ...
    'Bias',b)
layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 720
    OutputSize: 10

   Learnable Parameters
       Weights: [10x720 double]
          Bias: [10x1 double]

Use properties method to see a list of all properties.

여기서는 Weights 속성과 Bias 속성에 지정된 값이 포함되어 있습니다. 이러한 속성이 비어 있지 않으면 지정된 값이 훈련 시점에 초기 가중치 및 편향으로 사용됩니다. 이 경우 소프트웨어가 이니셜라이저 함수를 사용하지 않습니다.

알고리즘

모두 확장

참고 문헌

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010. https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification." In 2015 IEEE International Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile: IEEE, 2015. https://doi.org/10.1109/ICCV.2015.123

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.” Preprint, submitted February 19, 2014. https://arxiv.org/abs/1312.6120.

확장 기능

C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.

GPU 코드 생성
GPU Coder™를 사용하여 NVIDIA® GPU용 CUDA® 코드를 생성할 수 있습니다.

버전 내역

R2016a에 개발됨

모두 확장