Main Content

reluLayer

ReLU(Rectified Linear Unit) 계층

설명

ReLU 계층은 입력값의 각 요소에 대해 0보다 작은 값은 모두 0으로 설정하는 임계값 연산을 수행합니다.

이 연산은 다음과 동일합니다.

f(x)={x,x00,x<0.

생성

설명

layer = reluLayer는 ReLU 계층을 만듭니다.

예제

layer = reluLayer('Name',Name)은 ReLU 계층을 만들고 이름-값 쌍을 사용하여 선택적 속성인 Name을 설정합니다. 예를 들어, reluLayer('Name','relu1')은 이름이 'relu1'인 ReLU 계층을 만듭니다.

속성

모두 확장

계층 이름으로, 문자형 벡터 또는 string형 스칼라로 지정됩니다. Layer 배열 입력값에 대해 trainnetdlnetwork 함수는 이름이 ""인 계층에 자동으로 이름을 할당합니다.

ReLULayer 객체는 이 속성을 문자형 벡터로 저장합니다.

데이터형: char | string

읽기 전용 속성입니다.

계층에 대한 입력값의 개수로, 1로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: double

읽기 전용 속성입니다.

입력값 이름으로, {'in'}으로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: cell

읽기 전용 속성입니다.

계층의 출력값 개수로, 1로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: double

읽기 전용 속성입니다.

출력값 이름으로, {'out'}으로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: cell

예제

모두 축소

이름이 relu1인 ReLU 계층을 만듭니다.

layer = reluLayer(Name="relu1")
layer = 
  ReLULayer with properties:

    Name: 'relu1'

Layer 배열에 ReLU 계층을 포함시킵니다.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input       28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution   20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU              ReLU
     4   ''   2-D Max Pooling   2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected   10 fully connected layer
     6   ''   Softmax           softmax

세부 정보

모두 확장

참고 문헌

[1] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814. 2010.

확장 기능

C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.

GPU 코드 생성
GPU Coder™를 사용하여 NVIDIA® GPU용 CUDA® 코드를 생성할 수 있습니다.

버전 내역

R2016a에 개발됨