이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
nasnetmobile
설명
NasNet-Mobile은 컨벌루션 신경망이며, ImageNet([1]) 데이터베이스의 1백만 개가 넘는 영상에 대해 훈련되었습니다. 신경망은 영상을 키보드, 마우스, 연필, 각종 동물 등 1,000가지 사물 범주로 분류할 수 있습니다. 그 결과 이 신경망은 다양한 영상을 대표하는 다양한 특징을 학습했습니다. 신경망의 영상 입력 크기는 224×224입니다. MATLAB®의 여타 훈련된 신경망에 대한 자세한 내용은 사전 훈련된 심층 신경망 항목을 참조하십시오.
NasNet-Mobile 모델을 사용하여 classify
로 새 영상을 분류할 수 있습니다. GoogLeNet을 사용하여 영상 분류하기 항목의 단계를 따르되 GoogLeNet을 NasNet-Mobile로 바꾸어서 수행하십시오.
새로운 분류 작업에서 신경망을 다시 훈련시키려면 새로운 영상을 분류하도록 딥러닝 신경망 훈련시키기 항목의 단계를 수행하고 GoogLeNet 대신 NasNet-Mobile을 불러오십시오.
예제
출력 인수
참고 문헌
[1] ImageNet. http://www.image-net.org
[2] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning Transferable Architectures for Scalable Image Recognition ." arXiv preprint arXiv:1707.07012 2, no. 6 (2017).
확장 기능
버전 내역
R2019a에 개발됨
참고 항목
심층 신경망 디자이너 | vgg16
| vgg19
| googlenet
| trainNetwork
| layerGraph
| DAGNetwork
| resnet50
| resnet101
| inceptionresnetv2
| squeezenet
| densenet201
| nasnetlarge
| shufflenet