imagePretrainedNetwork
구문
설명
imagePretrainedNetwork 함수는 사전 훈련된 신경망을 불러오고, 신경망 아키텍처를 전이 학습과 미세 조정에 맞도록 선택적으로 조정합니다.
[는 사전 훈련된 SqueezeNet 신경망과 이 신경망의 클래스 이름을 반환합니다. 이 신경망은 ImageNet 데이터 세트에서 1000개 클래스에 대해 훈련됩니다.net,classNames] = imagePretrainedNetwork
[은 지정된 사전 훈련된 신경망과 해당 클래스 이름을 반환합니다.net,classNames] = imagePretrainedNetwork(name)
[는 위에 열거된 구문에 나와 있는 입력 인수 조합 외에, 하나 이상의 이름-값 인수를 사용하여 옵션을 지정합니다. 예를 들어 net,classNames] = imagePretrainedNetwork(___,Name=Value)Weights="none"은 신경망을 사전 훈련된 가중치 없이 초기화되지 않은 상태로 반환하도록 지정합니다.
예제
입력 인수
이름-값 인수
출력 인수
팁
2차원 및 3차원 ResNet 신경망 아키텍처를 만들고 사용자 지정하려면, 각각
resnetNetwork함수와resnet3dNetwork함수를 사용하십시오.
참고 문헌
[1] ImageNet. http://www.image-net.org.
[2] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size.” Preprint, submitted November 4, 2016. https://arxiv.org/abs/1602.07360.
[3] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going Deeper with Convolutions.” In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. Boston, MA, USA: IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7298594.
[4] Places. http://places2.csail.mit.edu/
[5] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. “Rethinking the Inception Architecture for Computer Vision.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–26. Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.308.
[6] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. “Densely Connected Convolutional Networks.” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–69. Honolulu, HI: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.243.
[7] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510–20. Salt Lake City, UT: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00474.
[8] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78. Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.90.
[9] Chollet, François. “Xception: Deep Learning with Depthwise Separable Convolutions.” Preprint, submitted in 2016. https://doi.org/10.48550/ARXIV.1610.02357.
[10] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.” Proceedings of the AAAI Conference on Artificial Intelligence 31, no. 1 (February 12, 2017). https://doi.org/10.1609/aaai.v31i1.11231.
[11] Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin, and Jian Sun. “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.” Preprint, submitted July 4, 2017. http://arxiv.org/abs/1707.01083.
[12] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. “Learning Transferable Architectures for Scalable Image Recognition.” Preprint, submitted in 2017. https://doi.org/10.48550/ARXIV.1707.07012.
[13] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.
[14] Tan, Mingxing, and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” Preprint, submitted in 2019. https://doi.org/10.48550/ARXIV.1905.11946.
[15] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Communications of the ACM 60, no. 6 (May 24, 2017): 84–90. https://doi.org/10.1145/3065386.
[16] Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” Preprint, submitted in 2014. https://doi.org/10.48550/ARXIV.1409.1556.
확장 기능
버전 내역
R2024a에 개발됨
참고 항목
trainnet | trainingOptions | dlnetwork | testnet | minibatchpredict | scores2label | predict | analyzeNetwork | 심층 신경망 디자이너 | resnetNetwork | resnet3dNetwork





