컴퓨터 비전
컴퓨터 비전 응용 분야에서 딥러닝 워크플로 확장
Deep Learning Toolbox™를 Computer Vision Toolbox™와 함께 사용하여 컴퓨터 비전 응용 분야에 딥러닝을 적용합니다.
앱
영상 레이블 지정기 | 컴퓨터 비전 응용 분야에서 영상에 레이블 지정 |
비디오 레이블 지정기 | Label video for computer vision applications |
함수
도움말 항목
영상 분류
- Train Vision Transformer Network for Image Classification
This example shows how to fine-tune a pretrained vision transformer (ViT) neural network to perform classification on a new collection of images.
객체 검출 및 인스턴스 분할
- Get Started with Object Detection Using Deep Learning (Computer Vision Toolbox)
Perform object detection using deep learning neural networks such as YOLOX, YOLO v4, and SSD. - Get Started with Instance Segmentation Using Deep Learning (Computer Vision Toolbox)
Segment objects using an instance segmentation model such as SOLOv2 or Mask R-CNN. - Choose an Object Detector (Computer Vision Toolbox)
Compare object detection deep learning models, such as YOLOX, YOLO v4, RTMDet, and SSD. - Augment Bounding Boxes for Object Detection
This example shows how to perform common kinds of image and bounding box augmentation as part of object detection workflows. - Import Pretrained ONNX YOLO v2 Object Detector
This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only look once (YOLO) v2 [1] object detection network and use the network to detect objects. - Export YOLO v2 Object Detector to ONNX
This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural Network Exchange) model format. - Deploy Object Detection Model as Microservice (MATLAB Compiler SDK)
Use a microservice to detect objects in images.
자동 외관 검사
- Getting Started with Anomaly Detection Using Deep Learning (Computer Vision Toolbox)
Anomaly detection using deep learning is an increasingly popular approach to automating visual inspection tasks. - 설명 가능한 FCDD 신경망을 사용하여 영상 이상 검출하기 (Computer Vision Toolbox)
이상 감지기를 사용하여 정상 알약과 비정상적인 흠집이 있거나 오염된 알약을 구별합니다. - Classify Defects on Wafer Maps Using Deep Learning (Computer Vision Toolbox)
Classify manufacturing defects on wafer maps using a simple convolutional neural network (CNN). - Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings (Computer Vision Toolbox)
Train a similarity-based anomaly detector using one-class learning of feature embeddings extracted from a pretrained ResNet-18 convolutional neural network. - Localize Industrial Defects Using PatchCore Anomaly Detector (Computer Vision Toolbox)
Perform localization of anomalous defects in printed circuit boards (PCBs) using anomaly heat maps generated with the PatchCore anomaly detector.
의미론적 분할
- 딥러닝을 사용한 의미론적 분할 시작하기 (Computer Vision Toolbox)
딥러닝을 사용하여 클래스를 기준으로 객체를 분할합니다. - Augment Pixel Labels for Semantic Segmentation
This example shows how to perform common kinds of image and pixel label augmentation as part of semantic segmentation workflows. - Semantic Segmentation Using Dilated Convolutions
This example shows how to train a semantic segmentation network using dilated convolutions. - 딥러닝을 사용한 다중분광 영상의 의미론적 분할 (Computer Vision Toolbox)
이 예제에서는 U-Net을 사용하여 7가지 채널을 갖는 다중분광 영상에 대한 의미론적 분할을 수행하는 방법을 보여줍니다. - Explore Semantic Segmentation Network Using Grad-CAM
This example shows how to explore the predictions of a pretrained semantic segmentation network using Grad-CAM. - Generate Adversarial Examples for Semantic Segmentation (Computer Vision Toolbox)
Generate adversarial examples for a semantic segmentation network using the basic iterative method (BIM). - Prune and Quantize Semantic Segmentation Network
Reduce the memory footprint of a semantic segmentation network and speed-up inference by compressing the network using pruning and quantization.
비디오 분류
- Activity Recognition from Video and Optical Flow Data Using Deep Learning
This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D) two-stream convolutional neural network based video classifier and then shows how to use transfer learning to train such a video classifier using RGB and optical flow data from videos [1]. - Gesture Recognition using Videos and Deep Learning
Perform gesture recognition using a pretrained SlowFast video classifier.