컴퓨터 비전
컴퓨터 비전 응용 분야에서 딥러닝 워크플로 확장
Deep Learning Toolbox™를 Computer Vision Toolbox™와 함께 사용하여 컴퓨터 비전 응용 분야에 딥러닝을 적용합니다.
앱
영상 레이블 지정기 | 컴퓨터 비전 응용 분야에서 영상에 레이블 지정 |
비디오 레이블 지정기 | Label video for computer vision applications |
함수
도움말 항목
영상 분류
- Train Vision Transformer Network for Image Classification
This example shows how to fine-tune a pretrained vision transformer (ViT) neural network neural network to perform classification on a new collection of images.
객체 검출 및 인스턴스 분할
- Get Started with Object Detection Using Deep Learning (Computer Vision Toolbox)
Perform object detection using deep learning neural networks such as YOLOX, YOLO v4, and SSD. - Get Started with Instance Segmentation Using Deep Learning (Computer Vision Toolbox)
Segment objects using an instance segmentation model such as SOLOv2 or Mask R-CNN. - Choose an Object Detector (Computer Vision Toolbox)
Compare object detection deep learning models, such as YOLOX, YOLO v4, RTMDet, and SSD. - Augment Bounding Boxes for Object Detection
This example shows how to perform common kinds of image and bounding box augmentation as part of object detection workflows. - Import Pretrained ONNX YOLO v2 Object Detector
This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only look once (YOLO) v2 [1] object detection network and use the network to detect objects. - Export YOLO v2 Object Detector to ONNX
This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural Network Exchange) model format. - Deploy Object Detection Model as Microservice (MATLAB Compiler SDK)
Use a microservice to detect objects in images.
자동 외관 검사
- Getting Started with Anomaly Detection Using Deep Learning (Computer Vision Toolbox)
Anomaly detection using deep learning is an increasingly popular approach to automating visual inspection tasks. - 설명 가능한 FCDD 신경망을 사용하여 영상 이상 검출하기
이상 감지기를 사용하여 정상 알약과 비정상적인 흠집이 있거나 오염된 알약을 구별합니다. - Classify Defects on Wafer Maps Using Deep Learning
This example shows how to classify eight types of manufacturing defects on wafer maps using a simple convolutional neural network (CNN). - Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings
Train a similarity-based anomaly detector using one-class learning of feature embeddings extracted from a pretrained ResNet-18 convolutional neural network.
의미론적 분할
- 딥러닝을 사용한 의미론적 분할 시작하기 (Computer Vision Toolbox)
딥러닝을 사용하여 클래스를 기준으로 객체를 분할합니다. - Augment Pixel Labels for Semantic Segmentation
This example shows how to perform common kinds of image and pixel label augmentation as part of semantic segmentation workflows. - Semantic Segmentation Using Dilated Convolutions
This example shows how to train a semantic segmentation network using dilated convolutions. - 딥러닝을 사용한 다중분광 영상의 의미론적 분할
이 예제에서는 U-Net을 사용하여 7가지 채널을 갖는 다중분광 영상에 대한 의미론적 분할을 수행하는 방법을 보여줍니다. - 딥러닝을 사용한 3차원 뇌종양 분할
이 예제에서는 3차원 의료 영상에서 뇌종양의 의미론적 분할을 수행하는 방법을 다룹니다. - Explore Semantic Segmentation Network Using Grad-CAM
This example shows how to explore the predictions of a pretrained semantic segmentation network using Grad-CAM. - Generate Adversarial Examples for Semantic Segmentation (Computer Vision Toolbox)
Generate adversarial examples for a semantic segmentation network using the basic iterative method (BIM). - Prune and Quantize Semantic Segmentation Network
Reduce the memory footprint of a semantic segmentation network and speed-up inference by compressing the network using pruning and quantization.
비디오 분류
- Activity Recognition from Video and Optical Flow Data Using Deep Learning
This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D) two-stream convolutional neural network based video classifier and then shows how to use transfer learning to train such a video classifier using RGB and optical flow data from videos [1]. - Gesture Recognition using Videos and Deep Learning
Perform gesture recognition using a pretrained SlowFast video classifier.