해석 가능성
해석 가능한 회귀 모델을 훈련시키고 복잡한 회귀 모델을 해석하기
선형 모델, 결정 트리, 일반화된 가산 모델과 같은 본래 해석 가능한 회귀 모델을 사용하거나 본래 해석할 수 없는 복잡한 회귀 모델을 해석하기 위한 해석 가능성 특징을 사용하십시오.
회귀 모델을 해석하는 방법을 알아보려면 Interpret Machine Learning Models 항목을 참조하십시오.
함수
객체
LinearModel | 선형 회귀 모델 |
RegressionGAM | Generalized additive model (GAM) for regression |
RegressionLinear | Linear regression model for high-dimensional data |
RegressionTree | Regression tree |
도움말 항목
모델 해석
- Interpret Machine Learning Models
Explain model predictions using thelime
andshapley
objects and theplotPartialDependence
function. - Shapley Values for Machine Learning Model
Compute Shapley values for a machine learning model using interventional algorithm or conditional algorithm. - Introduction to Feature Selection
Learn about feature selection algorithms and explore the functions available for feature selection. - Interpret Regression Models Trained in Regression Learner App
Determine how features are used in trained regression models by using partial dependence plots.
해석 가능한 모델
- Train Linear Regression Model
Train a linear regression model usingfitlm
to analyze in-memory data and out-of-memory data. - Train Generalized Additive Model for Regression
Train a generalized additive model (GAM) with optimal parameters, assess predictive performance, and interpret the trained model. - Train Regression Trees Using Regression Learner App
Create and compare regression trees, and export trained models to make predictions for new data.