이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
가우스 과정 회귀
앱
회귀 학습기 | 머신러닝 지도 학습을 사용하여 데이터를 예측하도록 회귀 모델 훈련시키기 |
블록
RegressionGP Predict | Predict responses using Gaussian process (GP) regression model (R2022a 이후) |
함수
객체
RegressionGP | Gaussian process regression model |
CompactRegressionGP | Compact Gaussian process regression model class |
RegressionPartitionedGP | Cross-validated Gaussian process regression (GPR) model (R2022b 이후) |
도움말 항목
- 가우스 과정 회귀 모델
가우스 과정 회귀(GPR) 모델은 비모수 커널 기반의 확률적 모델입니다.
- Kernel (Covariance) Function Options
In Gaussian processes, the covariance function expresses the expectation that points with similar predictor values will have similar response values.
- Exact GPR Method
Learn the parameter estimation and prediction in exact GPR method.
- Subset of Data Approximation for GPR Models
With large data sets, the subset of data approximation method can greatly reduce the time required to train a Gaussian process regression model.
- Subset of Regressors Approximation for GPR Models
The subset of regressors approximation method replaces the exact kernel function by an approximation.
- Fully Independent Conditional Approximation for GPR Models
The fully independent conditional (FIC) approximation is a way of systematically approximating the true GPR kernel function in a way that avoids the predictive variance problem of the SR approximation while still maintaining a valid Gaussian process.
- Block Coordinate Descent Approximation for GPR Models
Block coordinate descent approximation is another approximation method used to reduce computation time with large data sets.
- Predict Responses Using RegressionGP Predict Block
Train a Gaussian process (GP) regression model, and then use the RegressionGP Predict block for response prediction.