Main Content

이상 감지

이상값(outlier) 및 특이값(novelty) 감지

Statistics and Machine Learning Toolbox™는 레이블이 지정되지 않은 다변량 표본 데이터에 대한 여러 이상 감지 기능을 제공합니다. 또한 단일 클래스 서포트 벡터 머신(SVM) 알고리즘과 로버스트 랜덤 컷 포레스트 알고리즘을 사용하여 스트리밍 데이터에서 이상을 감지할 수 있습니다(Incremental Anomaly Detection Overview 항목 참조). 이상 감지 기능은 모델을 훈련시키거나 파라미터를 학습하여 이상값(훈련 데이터의 이상)을 감지합니다. 특이값 감지의 경우(오염되지 않은 훈련 데이터로 새 데이터에서 이상 감지), 오염되지 않은 훈련 데이터(이상값이 없는 데이터)로 모델을 훈련시키거나 파라미터를 학습하고, 훈련된 모델 또는 학습된 파라미터를 사용하여 새 데이터에서 이상을 감지할 수 있습니다. 자세한 내용은 Unsupervised Anomaly Detection 항목을 참조하십시오.

정상적인 점과 정상적이지 않은 점으로 레이블이 지정된 훈련 데이터가 있는 경우 이진 분류 모델을 훈련시키고 resubPredictpredict 객체 함수를 사용하여 각각 훈련 데이터 및 새 데이터에서 이상을 감지할 수 있습니다. 지원되는 분류 기능 목록은 분류 항목을 참조하십시오.

이 툴박스는 또한 분류, 회귀 또는 군집화 모델을 훈련시킨 후에 적용할 수 있는 모델별 이상 감지 기능을 제공합니다. 자세한 내용은 Model-Specific Anomaly Detection 항목을 참조하십시오.

함수

모두 확장

iforestFit isolation forest for anomaly detection (R2021b 이후)
isanomalyFind anomalies in data using isolation forest (R2021b 이후)
rrcforestFit robust random cut forest model for anomaly detection (R2023a 이후)
isanomalyFind anomalies in data using robust random cut forest (R2023a 이후)
lofCreate local outlier factor model for anomaly detection (R2022b 이후)
isanomalyFind anomalies in data using local outlier factor (R2022b 이후)
ocsvmFit one-class support vector machine (SVM) model for anomaly detection (R2022b 이후)
isanomalyFind anomalies in data using one-class support vector machine (SVM) (R2022b 이후)
robustcovRobust multivariate covariance and mean estimate
mahal기준 표본까지의 마할라노비스 거리
pdist2두 관측값 세트 간의 쌍별(Pairwise) 거리
incrementalRobustRandomCutForestRobust random cut forest model for incremental anomaly detection (R2023b 이후)
incrementalLearnerConvert robust random cut forest model to incremental learner (R2023b 이후)
fitTrain robust random cut forest model for incremental anomaly detection (R2023b 이후)
isanomalyFind anomalies in data using robust random cut forest (RRCF) for incremental learning (R2023b 이후)
resetReset incremental robust random cut forest model (R2023b 이후)
incrementalOneClassSVM One-class support vector machine (SVM) model for incremental anomaly detection (R2023b 이후)
incrementalLearnerConvert one-class SVM model to incremental learner (R2023b 이후)
fitTrain one-class SVM model for incremental anomaly detection (R2023b 이후)
isanomalyFind anomalies in data using one-class support vector machine (SVM) for incremental learning (R2023b 이후)
resetReset incremental one-class SVM model (R2023b 이후)

객체

IsolationForestIsolation forest for anomaly detection (R2021b 이후)
RobustRandomCutForestRobust random cut forest model for anomaly detection (R2023a 이후)
LocalOutlierFactorLocal outlier factor model for anomaly detection (R2022b 이후)
OneClassSVMOne-class support vector machine (SVM) for anomaly detection (R2022b 이후)

도움말 항목

관련 정보