isanomaly
Find anomalies in data using robust random cut forest (RRCF) for incremental learning
Since R2023b
Syntax
Description
finds anomalies in the table tf
= isanomaly(forest
,Tbl
)Tbl
using the incrementalRobustRandomCutForest
object forest
and
returns the logical array tf
, whose elements are
true
when an anomaly is detected in the corresponding row of
Tbl
. You must use this syntax if you train
forest
by passing a table to fit
, or if
you create forest
using the incrementalLearner
function with a RobustRandomCutForest
object trained on data in a table.
finds anomalies in the matrix tf
= isanomaly(forest
,X
)X
. You must use this syntax if you
train forest
by passing a matrix to fit
, or if
you create forest
using the incrementalLearner
function with a RobustRandomCutForest
object trained on data in a matrix.
specifies the threshold for the anomaly score using any of the input argument
combinations in the previous syntaxes. tf
= isanomaly(___,ScoreThreshold=scoreThreshold
)isanomaly
identifies
observations with scores above scoreThreshold
as anomalies.
Examples
Input Arguments
Output Arguments
References
[1] Guha, Sudipto, N. Mishra, G. Roy, and O. Schrijvers. "Robust Random Cut Forest Based Anomaly Detection on Streams," Proceedings of The 33rd International Conference on Machine Learning 48 (June 2016): 2712–21.
Version History
Introduced in R2023b