이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
softmaxLayer
소프트맥스 계층
설명
소프트맥스 계층은 입력값에 소프트맥스 함수를 적용합니다.
생성
속성
NumInputs
— 입력값의 개수
1
(디폴트 값)
읽기 전용 속성입니다.
계층에 대한 입력값의 개수로, 1
로 반환됩니다. 이 계층은 단일 입력값만 받습니다.
데이터형: double
InputNames
— 입력값 이름
{'in'}
(디폴트 값)
읽기 전용 속성입니다.
입력값 이름으로, {'in'}
으로 반환됩니다. 이 계층은 단일 입력값만 받습니다.
데이터형: cell
NumOutputs
— 출력값 개수
1
(디폴트 값)
읽기 전용 속성입니다.
계층의 출력값 개수로, 1
로 반환됩니다. 이 계층은 단일 출력값만 가집니다.
데이터형: double
OutputNames
— 출력값 이름
{'out'}
(디폴트 값)
읽기 전용 속성입니다.
출력값 이름으로, {'out'}
으로 반환됩니다. 이 계층은 단일 출력값만 가집니다.
데이터형: cell
예제
소프트맥스 계층 만들기
이름이 sm1'
인 소프트맥스 계층을 만듭니다.
layer = softmaxLayer('Name','sm1')
layer = SoftmaxLayer with properties: Name: 'sm1'
Layer
배열에 소프트맥스 계층을 포함시킵니다.
layers = [ ... imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(10) softmaxLayer classificationLayer]
layers = 7x1 Layer array with layers: 1 '' Image Input 28x28x1 images with 'zerocenter' normalization 2 '' 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0] 3 '' ReLU ReLU 4 '' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 5 '' Fully Connected 10 fully connected layer 6 '' Softmax softmax 7 '' Classification Output crossentropyex
알고리즘
소프트맥스 계층
소프트맥스 계층은 입력값에 소프트맥스 함수를 적용합니다.
분류 문제에서 소프트맥스 계층과 그 뒤의 분류 계층은 일반적으로 마지막 완전 연결 계층 뒤에 옵니다.
출력 유닛 활성화 함수는 다음과 같은 소프트맥스 함수입니다.
여기서 이고 입니다.
다중클래스 분류 문제에서 소프트맥스 함수는 마지막 완전 연결 계층 뒤에 오는 출력 유닛 활성화 함수입니다.
여기서 이고 입니다. 그리고, , 은 주어진 샘플 클래스 r에 대한 조건부 확률이고, 은 클래스 사전 확률입니다.
소프트맥스 함수는 정규화된 지수라고 알려져 있으며, 로지스틱 시그모이드 함수의 다중클래스 일반화로 간주되기도 합니다 [1].
계층 입력 형식 및 출력 형식
계층 배열 또는 계층 그래프의 계층은 뒤에 오는 계층에 데이터를 전달할 때 형식이 지정된 dlarray
객체로 전달합니다. dlarray
객체의 형식은 문자들로 구성된 문자열로, 각 문자는 데이터의 대응되는 차원을 설명합니다. 형식은 다음 문자 중 하나 이상으로 구성됩니다.
"S"
— 공간"C"
— 채널"B"
— 배치"T"
— 시간"U"
— 지정되지 않음
4차원 배열로 표현되는 2차원 영상 데이터를 예로 들면 처음 2개 차원은 영상의 공간 차원, 3번째 차원은 영상의 채널, 4번째 차원은 배치 차원에 대응되며, "SSCB"
(공간, 공간, 채널, 배치) 형식으로 설명될 수 있습니다.
functionLayer
객체를 사용하여 사용자 지정 계층을 개발하거나, dlnetwork
객체에 forward
및 predict
함수를 사용하는 경우와 같은 자동 미분 워크플로에서 이러한 dlarray
객체와 상호 작용할 수 있습니다.
이 표는 SoftmaxLayer
객체의 지원되는 입력 형식과 그에 대응되는 출력 형식을 보여줍니다. 계층의 출력이 nnet.layer.Formattable
클래스를 상속하지 않는 사용자 지정 계층에 전달되거나 Formattable
속성을 0
(false
)으로 설정한 FunctionLayer
객체에 전달될 경우 이 계층은 이 표에 나와 있는 형식에 따라 순서가 지정된 차원을 갖는, 형식이 지정되지 않은 dlarray
객체를 수신합니다. 여기에 나와 있는 형식은 일부에 불과합니다. 계층은 다른 형식도 지원할 수 있습니다(예: 추가적인 "S"
(공간) 또는 "U"
(미지정) 차원을 갖는 형식).
입력 형식 | 출력 형식 |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dlnetwork
객체에서 SoftmaxLayer
객체는 다음 입력 형식과 출력 형식의 결합도 지원합니다.
입력 형식 | 출력 형식 |
---|---|
|
|
|
|
|
|
|
|
참고 문헌
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
확장 기능
C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.
GPU 코드 생성
GPU Coder™를 사용하여 NVIDIA® GPU용 CUDA® 코드를 생성할 수 있습니다.
버전 내역
R2016a에 개발됨
MATLAB 명령
다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.
명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)