Object Recognition: Deep Learning and Machine Learning for Computer Vision
Object recognition is enabling innovative systems like self-driving cars, image based retrieval, and autonomous robotics. The machine learning and deep learning these systems rely on can be difficult to train, evaluate, and compare.
In this webinar we explore how MATLAB addresses the most common challenges encountered while developing object recognition systems. This webinar will cover new capabilities for deep learning, machine learning and computer vision.
We will use real-world examples to demonstrate:
- Training models using large image datasets
- Training deep neural networks from scratch
- Using transfer learning to re-use trained deep networks for new tasks
- Exploring the tradeoffs between machine learning and deep learning
About the Presenters
Johanna Pingel joined the MathWorks team in 2013, specializing in Image Processing and Computer Vision applications with MATLAB. She has a M.S. degree from Rensselaer Polytechnic Institute and a B.A. degree from Carnegie Mellon University. She has been working in the Computer Vision application space for over 5 years, with a focus on object detection and tracking.
Avinash Nehemiah works on computer vision applications in technical marketing at MathWorks. Prior to joining MathWorks he spent 7 years as an algorithm developer and researcher designing computer vision algorithms for hospital safety and video surveillance. He holds an MSEE degree from Carnegie Mellon University.
Recorded: 7 Mar 2017
Download Code and Files
Related Products
Learn More
Featured Product
Deep Learning Toolbox
Up Next:
Related Videos:
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)