Machine Learning for Predictive Modelling (Highlights)
Machine learning is ubiquitous and used to make critical business and life decisions every day. Each machine learning problem is unique, so it can be challenging to manage raw data, identify key features that impact your model, train multiple models, and perform model assessments.
This session explores the fundamentals of machine learning using MATLAB®. Rory reviews typical workflows for both supervised (classification and regression) and unsupervised learning, through examples.
Highlights include:
- Accessing, exploring, analysing, and visualising data
- Using the Classification Learner app and functions to interactively perform common tasks such as data exploration, feature selection, cross-validation, and results assessment
This presentation demonstrates examples of new functionality in Statistics and Machine Learning Toolbox™ and Deep Learning Toolbox™.
This video is a short version of the presentation given at MATLAB EXPO. To watch the full-length video, see the link in the "Other Resources" section below.
Recorded: 7 Oct 2015
Related Products
Learn More
Featured Product
Statistics and Machine Learning Toolbox
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)