Emotion Recognition of Call Center Conversations
Sathvik Tarikere Sathyanarayana, Robert Bosch Engineering and Business Solutions Limited
Today, call centers are one of the most important means of providing service to consumers and end users. Call centers provide a cheap and effective way to interact with consumers in a more personal manner. However, the managers of such centers find it difficult to grade the performance of their employees due to the abstract nature of the conversation. Many factors, such as consumer satisfaction, duration of call, and improving the company’s image from the consumer’s perspective, determine the effectiveness of the call center employee.
In this presentation, Sathvik proposes a framework that can monitor, analyze, and classify conversations between agents and customers. In a two-step process, we first diarize the calls using vector quantization, recognize turns, and annotate acts. Robert Bosch Engineering uses hidden Markov models with Mel-frequency cepstral coefficients in an approach to identify emotions. The engine has been tested using a Berlin database of German emotional speech, yielding 83% recognition rate. Real-world data of call center recordings is used to verify results.
Recorded: 21 Apr 2016
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)