Main Content

getQualifiedName

Get model element qualified name

Since R2019a

Description

example

getQualifiedName(element) gets the qualified name of the architecture model element element.

Examples

collapse all

Create a component, newComponent, then get its qualified name.

model = systemcomposer.createModel("newModel");
systemcomposer.openModel("newModel");
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
name = getQualifiedName(newComponent)
name =

    'newModel/newComponent'

Input Arguments

collapse all

More About

collapse all

Definitions

TermDefinitionApplicationMore Information
architecture

A System Composer™ architecture represents a system of components and how they interface with each other structurally and behaviorally.

Different types of architectures describe different aspects of systems. You can use views to visualize a subset of components in an architecture. You can define parameters on the architecture level using the Parameter Editor.

model

A System Composer model is the file that contains architectural information, including components, ports, connectors, interfaces, and behaviors.

Perform operations on a model:

  • Extract the root-level architecture contained in the model.

  • Apply profiles.

  • Link interface data dictionaries.

  • Generate instances from model architecture.

A System Composer model is stored as an SLX file.

Create Architecture Model with Interfaces and Requirement Links
component

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear function in the context of an architecture. A component defines an architectural element, such as a function, a system, hardware, software, or other conceptual entity. A component can also be a subsystem or subfunction.

Represented as a block, a component is a part of an architecture model that can be separated into reusable artifacts. Transfer information between components with:

Components
port

A port is a node on a component or architecture that represents a point of interaction with its environment. A port permits the flow of information to and from other components or systems.

These are different types of ports:

  • Component ports are interaction points on the component to other components.

  • Architecture ports are ports on the boundary of the system, whether the boundary is within a component or the overall architecture model.

Ports
connector

Connectors are lines that provide connections between ports. Connectors describe how information flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an interface on a port to define how the components interact.

Connections

TermDefinitionApplicationMore Information
physical subsystem

A physical subsystem is a Simulink® subsystem with Simscape™ connections.

A physical subsystem with Simscape connections uses a physical network approach suited for simulating systems with real physical components and represents a mathematical model.

Implement Component Behavior Using Simscape
physical port

A physical port represents a Simscape physical modeling connector port called a Connection Port (Simscape).

Use physical ports to connect components in an architecture model or to enable physical systems in a Simulink subsystem.

Define Physical Ports on Component
physical connector

A physical connector can represent a nondirectional conserving connection of a specific physical domain. Connectors can also represent physical signals.

Use physical connectors to connect physical components that represent features of a system to simulate mathematically.

Architecture Model with Simscape Behavior for a DC Motor
physical interface

A physical interface defines the kind of information that flows through a physical port. The same interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to a Simulink.ConnectionBus object that specifies any number of Simulink.ConnectionElement objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one physical domain.

Specify Physical Interfaces on Ports
physical element

A physical element describes the decomposition of a physical interface. A physical element is equivalent to a Simulink.ConnectionElement object.

Define the Type of a physical element as a physical domain to enable use of that domain in a physical model.

Describe Component Behavior Using Simscape

Version History

Introduced in R2019a