이 페이지의 최신 내용은 아직 번역되지 않았습니다. 최신 내용은 영문으로 볼 수 있습니다.

impz

디지털 필터의 임펄스 응답

설명

예제

[h,t] = impz(b,a)는 분자 계수 b와 분모 계수 a를 갖는 디지털 필터의 임펄스 응답을 반환합니다. 이 함수는 샘플의 개수를 선택하고 응답 계수를 h에, 샘플 시간을 t에 반환합니다.

[h,t] = impz(sos)는 2차섹션형(SOS) 행렬 sos로 지정된 필터의 임펄스 응답을 반환합니다.

예제

[h,t] = impz(d)는 디지털 필터 d의 임펄스 응답을 반환합니다. designfilt를 사용하여 주파수-응답 사양을 기반으로 d를 생성합니다.

예제

[h,t] = impz(___,n)은 계산할 임펄스-응답 샘플을 지정합니다. 위에 열거된 구문 중 하나를 사용하여 필터를 지정할 수 있습니다.

예제

[h,t] = impz(___,n,fs)는 간격이 1/fs 단위인 연속 샘플로 구성된 벡터 t를 반환합니다.

예제

impz(___)에 출력 인수를 지정하지 않으면 필터의 임펄스 응답을 플로팅합니다.

예제

모두 축소

정규화된 통과대역 주파수 0.4 rad/sample을 갖는 4차 저역통과 타원 필터를 설계합니다. 통과대역 리플을 0.5dB로 지정하고 저지대역 감쇠량을 20dB로 지정합니다. 임펄스 응답의 처음 50개 샘플을 플로팅합니다.

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)

designfilt를 사용하여 동일한 필터를 설계합니다. 이 필터에 대한 임펄스 응답의 처음 50개 샘플을 플로팅합니다.

d = designfilt('lowpassiir','DesignMethod','ellip','FilterOrder',4, ...
               'PassbandFrequency',0.4, ...
               'PassbandRipple',0.5,'StopbandAttenuation',20);
impz(d,50)

β=4인 카이저 윈도우를 사용하여 차수가 18인 FIR 고역통과 필터를 설계합니다. 샘플 레이트를 100Hz, 차단 주파수를 30Hz로 지정합니다. 필터의 임펄스 응답을 표시합니다.

b = fir1(18,30/(100/2),'high',kaiser(19,4));
impz(b,1,[],100)

designfilt를 사용하여 동일한 필터를 설계하고 필터의 임펄스 응답을 플로팅합니다.

d = designfilt('highpassfir','FilterOrder',18,'SampleRate',100, ...
               'CutoffFrequency',30,'Window',{'kaiser',4});
impz(d,[],100)

입력 인수

모두 축소

전달 함수 계수로, 벡터로 지정됩니다. 이 전달 함수를 ba로 표현하면 다음과 같습니다.

H(ejω)=B(ejω)A(ejω)=b(1)+b(2)ejω+b(3)ej2ω++b(M)ej(M1)ωa(1)+a(2)ejω+a(3)ej2ω++a(N)ej(N1)ω.

예: b = [1 3 3 1]/6a = [3 0 1 0]/3은 0.5π rad/sample의 정규화된 3dB 주파수를 갖는 3차 버터워스 필터를 지정합니다.

데이터형: double | single
복소수 지원 여부:

2차섹션형 계수로, 행렬로 지정됩니다. sos는 Kx6 행렬이며, 여기서 섹션 개수 K는 2보다 크거나 같아야 합니다. 섹션 개수가 2보다 작으면 함수는 입력값을 분자 벡터로 간주합니다. sos의 각 행은 2차(바이쿼드) 필터의 계수에 대응됩니다. sos의 i번째 행은 [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)]에 대응됩니다.

예: s = [2 4 2 6 0 2;3 3 0 6 0 0]은 0.5π rad/sample의 정규화된 3dB 주파수를 갖는 3차 버터워스 필터를 지정합니다.

데이터형: double | single
복소수 지원 여부:

디지털 필터로, digitalFilter 객체로 지정됩니다. designfilt를 사용하여 주파수 응답 사양을 기반으로 하여 디지털 필터를 생성합니다.

예: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)는 0.5π rad/sample의 정규화된 3dB 주파수를 갖는 3차 버터워스 필터를 지정합니다.

샘플 번호로, 양의 정수, 음이 아닌 정수로 구성된 벡터 또는 빈 벡터로 지정됩니다.

  • n이 양의 정수인 경우 impz는 임펄스 응답의 처음 n개 샘플을 계산하고 t(0:n-1)'로 반환합니다.

  • n이 음이 아닌 정수로 구성된 벡터인 경우 impz는 벡터에 지정된 위치에서 임펄스 응답을 계산합니다.

  • n이 빈 벡터인 경우 impz는 샘플 개수를 자동으로 계산합니다. 자세한 내용은 알고리즘 항목을 참조하십시오.

예: impz([2 4 2 6 0 2;3 3 0 6 0 0],5)는 버터워스 필터의 임펄스 응답의 처음 5개 샘플을 계산합니다.

예: impz([2 4 2 6 0 2;3 3 0 6 0 0],[0 3 2 1 4 5])는 버터워스 필터의 임펄스 응답의 처음 6개 샘플을 계산합니다.

예: impz([2 4 2 6 0 2;3 3 0 6 0 0],[],5e3)은 5kHz로 샘플링된 신호를 필터링하도록 설계된 버터워스 필터의 임펄스 응답을 계산합니다.

샘플 레이트로, 양의 스칼라로 지정됩니다. 시간 단위가 초이면 fs는 헤르츠로 표현됩니다.

데이터형: double

출력 인수

모두 축소

임펄스 응답 계수로, 열 벡터로 반환됩니다.

샘플 시간으로, 열 벡터로 반환됩니다.

알고리즘

impz는 다음을 사용하여 길이가 n인 임펄스 시퀀스에 필터를 적용합니다.

filter(b,a,[1 zeros(1,n-1)])

그리고 stem을 사용하여 결과를 플로팅합니다.

참고

impz에 대한 입력값이 단정밀도인 경우 함수는 단정밀도 산술 연산을 사용하여 임펄스 응답을 계산하고 단정밀도 출력값을 반환합니다.

impzn을 자동으로 계산하는 경우 알고리즘은 필터의 속성에 따라 달라집니다.

  • FIR 필터 — nb의 길이입니다.

  • IIR 필터 — impz는 먼저 roots를 사용하여 전달 함수의 극점을 구합니다.

    • 필터가 불안정한 경우, 가장 큰 극점에 해당하는 항이 원래 값의 106배가 되는 지점으로 n이 선택됩니다.

    • 필터가 안정적인 경우, 진폭이 가장 큰 극점에 해당하는 항이 원래 진폭의 5 × 10–5배가 되는 지점으로 n이 선택됩니다.

    • 필터가 단위원에만 극점이 있는 진동인 경우, impz는 가장 느린 진동의 5개 주기를 계산합니다.

    • 진동하는 항과 감쇠하는 항을 둘 다 가진 필터의 경우, 가장 느린 진동의 5개 주기를 갖는 지점과 가장 큰 극점에 해당하는 항이 원래 진폭의 5 × 10–5배가 되는 지점 중 더 큰 값으로 n이 선택됩니다.

또한, impz는 분자 다항식에서 지연을 허용합니다. 지연 개수는 샘플 개수의 계산에 포함되어 있습니다.

R2006a 이전에 개발됨