Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

arburg

자기회귀 전극점 모델 파라미터 — Burg 방법

설명

예제

a = arburg(x,p)는 입력 배열 xp차 모델에 대응하는 정규화된 자기회귀(AR) 파라미터를 반환합니다.

[a,e,rc] = arburg(x,p)는 백색 잡음 입력값에 대한 분산 추정값 e와 반사 계수 rc도 반환합니다.

예제

모두 축소

다항식 계수로 구성된 벡터를 사용하여 백색 잡음의 1024개 샘플을 필터링함으로써 AR(4) 과정을 생성합니다. 재현 가능한 결과를 얻기 위해 난수 생성기를 재설정합니다. Burg 방법을 사용하여 계수를 추정합니다.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = arburg(y,4)
arcoeffs = 1×5

    1.0000   -2.7743    3.8408   -2.6843    0.9360

매번 입력 잡음의 분산을 변경하여 해당 과정에 대해 50개의 구현을 생성합니다. Burg 방법으로 추정한 분산과 실제 값을 비교합니다.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);
noisevar = zeros(1,nrealiz);

for k = 1:nrealiz
    y = filter(1,A,noisestdz(k) * randnoise(:,k));
    [arcoeffs,noisevar(k)] = arburg(y,4);
end

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Figure contains an axes. The axes with title Noise Variance contains an object of type line.

함수의 다중채널 구문을 사용하여 이 절차를 반복합니다.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = arburg(Y,4);

hold on
plot(noisestdz.^2,variances,'o')
hold off
legend('Single channel loop','Multichannel','Location','best')

Figure contains an axes. The axes with title Noise Variance contains 2 objects of type line. These objects represent Single channel loop, Multichannel.

입력 인수

모두 축소

입력 배열로, 벡터나 행렬로 지정됩니다.

예: filter(1,[1 -0.75 0.5],0.2*randn(1024,1))은 2차 자기회귀 과정을 지정합니다.

데이터형: single | double
복소수 지원 여부:

모델 차수로, 양의 정수 스칼라로 지정됩니다. px의 요소 개수 또는 행 개수보다 작아야 합니다.

데이터형: single | double

출력 인수

모두 축소

정규화된 자기회귀 파라미터로, 벡터 또는 행렬로 반환됩니다. x가 행렬이면 a의 각 행은 x의 열에 대응됩니다. ap + 1개의 열을 가지며 z의 지수 내림차순으로 정렬된 AR 시스템 파라미터 A(z)를 포함합니다.

백색 잡음 입력 분산으로, 스칼라 또는 행 벡터로 반환됩니다. x가 행렬이면 e의 각 요소는 x의 열에 대응됩니다.

반사 계수로, 열 벡터 또는 행렬로 반환됩니다. x가 행렬이면 rc의 각 열은 x의 열에 대응됩니다. rcp개 행을 가집니다.

세부 정보

모두 축소

AR(p) 모델

p차 AR 모델의 현재 출력값은 이전 p개 출력값의 일차 결합에 백색 잡음 입력값이 더해진 값입니다.

이전 p개 출력값에 대한 가중치는 자기회귀에 대한 평균 제곱 예측 오차를 최소화합니다. y(n)이 현재 출력값이고 x(n)이 평균 0의 백색 잡음 입력값인 경우 AR(p) 모델은 다음과 같습니다.

y(n)+k=1pa(k)y(nk)=x(n).

반사 계수

반사 계수는 –1로 스케일링된 편자기상관 계수입니다. 반사 계수는 y(n)y(n – k) 사이에 있는 k – 1개의 시간 스텝에 따라 예측값을 뺀 이후 이 두 값 간의 시간 의존성을 나타냅니다.

알고리즘

Burg 방법은 반사 계수를 추정하고 반사 계수를 사용하여 AR 파라미터를 재귀적으로 추정합니다. 순방향과 역방향 예측 오차의 업데이트를 설명하는 재귀와 격자 필터 관계는 [1]에서 확인할 수 있습니다.

참고 문헌

[1] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1988.

확장 기능

C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.

참고 항목

| | | |

도움말 항목

R2006a 이전에 개발됨