시각적 인식
머신러닝 기법과 딥러닝 기법을 사용하여 객체를 검출할 수 있습니다. RANSAC(random sample consensus) 알고리즘을 사용하여 포물선 차선 경계나 3차 차선 경계를 분할, 검출, 모델링할 수도 있습니다. 객체를 검출한 후에는 Automated Driving Toolbox™ 함수를 사용하여 검출을 평가하고 시각화합니다.
함수
peopleDetectorACF | Detect people using aggregate channel features |
vehicleDetectorACF | Load vehicle detector using aggregate channel features |
acfObjectDetector | Detect objects using aggregate channel features |
configureDetectorMonoCamera | Configure object detector for using calibrated monocular camera |
acfObjectDetectorMonoCamera | Detect objects in monocular camera using aggregate channel features |
trainACFObjectDetector | Train ACF object detector |
objectDetectorTrainingData | Create training data for an object detector |
vision.PeopleDetector | (Removed) Detect upright people using HOG features |
vision.CascadeObjectDetector | Detect objects using the Viola-Jones algorithm |
trainCascadeObjectDetector | Train cascade object detector model |
vehicleDetectorFasterRCNN | Detect vehicles using Faster R-CNN |
configureDetectorMonoCamera | Configure object detector for using calibrated monocular camera |
fastRCNNObjectDetectorMonoCamera | Detect objects in monocular camera using Fast R-CNN deep learning detector |
fasterRCNNObjectDetectorMonoCamera | Detect objects in monocular camera using Faster R-CNN deep learning detector |
ssdObjectDetectorMonoCamera | Detect objects in monocular camera using SSD deep learning detector |
yolov2ObjectDetectorMonoCamera | Detect objects in monocular camera using YOLO v2 deep learning detector |
yolov3ObjectDetectorMonoCamera | Detect objects in monocular camera using YOLO v3 deep learning detector (R2023a 이후) |
yolov4ObjectDetectorMonoCamera | Detect objects in monocular camera using YOLO v4 deep learning detector (R2022a 이후) |
vehicleDetectorYOLOv2 | Detect vehicles using YOLO v2 Network |
trainYOLOv2ObjectDetector | Train YOLO v2 object detector |
objectDetectorTrainingData | Create training data for an object detector |
segmentLaneMarkerRidge | Detect lanes in a grayscale intensity image |
findParabolicLaneBoundaries | Find boundaries using parabolic model |
parabolicLaneBoundary | Parabolic lane boundary model |
findCubicLaneBoundaries | Find boundaries using cubic model |
cubicLaneBoundary | Cubic lane boundary model |
computeBoundaryModel | Obtain y-coordinates of lane boundaries given x-coordinates |
insertLaneBoundary | Insert lane boundary into image |
fitPolynomialRANSAC | Fit polynomial to points using RANSAC |
ransac | 잡음 있는 데이터에 모델 피팅 |
evaluateObjectDetection | Evaluate object detection data set against ground truth (R2023b 이후) |
evaluateLaneBoundaries | Evaluate lane boundary models against ground truth |
insertText | 영상 또는 비디오에 텍스트 삽입 |
insertShape | 영상 또는 비디오에 형태 삽입 |
insertMarker | 영상 또는 비디오에 마커 삽입 |
insertLaneBoundary | Insert lane boundary into image |
insertObjectAnnotation | 트루컬러 또는 회색조 영상 또는 비디오에 주석 추가 |
vision.DeployableVideoPlayer | Display video |
vision.VideoPlayer | Play video or display image |
추천 예제
Visual Perception Using Monocular Camera
Construct a monocular camera sensor simulation capable of lane boundary and vehicle detections.
Generate Code for Lane Marker Detector
Generate C++ code for lane marker detector and validate the functional equivalence using software-in-the-loop (SIL) simulation.
Automate Testing for Lane Marker Detector
Automate the testing of a lane marker detector algorithm and generated code.
Train a Deep Learning Vehicle Detector
Train a vision-based vehicle detector using deep learning.
Generate Code for Vision Vehicle Detector
Generate deployable code for a monocular-camera-based vehicle detector and validate the functional equivalence with simulation.
Automate Testing for Vision Vehicle Detector
Automate the testing of a vehicle detector and generated code.
Track Multiple Vehicles Using a Camera
Detect and track multiple vehicles with a monocular camera mounted in a vehicle.
Perception-Based Parking Spot Detection Using Unreal Engine Simulation
Build a bird's-eye-view map of a parking lot using semantically segmented images from the ego vehicle camera, and detect empty parking spots from the map.
Perception Based Live Parking Spot Detection Using Unreal Engine Simulation
Develop a live parking spot detection system using deep learning and SLAM.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)







