Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

clippedReluLayer

Clipped ReLU(Rectified Linear Unit) 계층

설명

Clipped ReLU 계층은 0보다 작은 입력값은 모두 0으로 설정하고 자르기 상한(clipping ceiling)보다 큰 값은 모두 자르기 상한값으로 설정하는 임계값 연산을 수행합니다.

이 연산은 다음과 동일합니다.

f(x)={0,x<0x,0x<ceilingceiling,xceiling.

자르기는 출력값이 지나치게 커지는 것을 방지합니다.

생성

설명

layer = clippedReluLayer(ceiling)은 자르기 상한이 ceiling인 Clipped ReLU 계층을 반환합니다.

예제

layer = clippedReluLayer(ceiling,'Name',Name)은 선택적 속성인 Name을 설정합니다.

속성

모두 확장

Clipped ReLU

입력값 자르기 상한으로, 양의 스칼라로 지정됩니다.

예: 10

계층

계층 이름으로, 문자형 벡터 또는 string형 스칼라로 지정됩니다. 계층 그래프에 계층을 포함하려면 비어 있지 않은 고유한 계층 이름을 지정해야 합니다. 이 계층을 사용하여 시리즈 신경망을 훈련시킬 때 Name''로 설정하면, 소프트웨어가 훈련 시점에 해당 계층에 자동으로 이름을 할당합니다.

데이터형: char | string

계층의 입력값 개수. 이 계층은 단일 입력값만 받습니다.

데이터형: double

계층의 입력값 이름. 이 계층은 단일 입력값만 받습니다.

데이터형: cell

계층의 출력값 개수. 이 계층은 단일 출력값만 가집니다.

데이터형: double

계층의 출력값 이름. 이 계층은 단일 출력값만 가집니다.

데이터형: cell

예제

모두 축소

이름이 'clip1' 이고 자르기 상한이 10인 Clipped ReLU 계층을 만듭니다.

layer = clippedReluLayer(10,'Name','clip1')
layer = 
  ClippedReLULayer with properties:

       Name: 'clip1'

   Hyperparameters
    Ceiling: 10

Layer 배열에 Clipped ReLU 계층을 포함시킵니다.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    clippedReluLayer(10)
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Clipped ReLU            Clipped ReLU with ceiling 10
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

참고 문헌

[1] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, et al. "Deep speech: Scaling up end-to-end speech recognition." Preprint, submitted 17 Dec 2014. http://arxiv.org/abs/1412.5567

확장 기능

C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.

GPU 코드 생성
GPU Coder™를 사용하여 NVIDIA® GPU용 CUDA® 코드를 생성할 수 있습니다.

R2017b에 개발됨