Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

leakyReluLayer

Leaky ReLU(Rectified Linear Unit) 계층

설명

Leaky ReLU 계층은 0보다 작은 모든 입력값에 고정된 스칼라를 곱하는 임계값 연산을 수행합니다.

이 연산은 다음과 동일합니다.

f(x)={x,x0scale*x,x<0.

생성

설명

layer = leakyReluLayer는 Leaky ReLU 계층을 반환합니다.

layer = leakyReluLayer(scale)은 음의 입력값에 대한 스칼라 승수가 scale인 Leaky ReLU 계층을 반환합니다.

layer = leakyReluLayer(___,'Name',Name)은 Leaky ReLU 계층을 반환하고 선택적 속성인 Name을 설정합니다.

예제

속성

모두 확장

Leaky ReLU

음의 입력값에 대한 스칼라 승수로, 숫자형 스칼라로 지정됩니다.

예: 0.4

계층

계층 이름으로, 문자형 벡터 또는 string형 스칼라로 지정됩니다. Layer 배열 입력값에 대해 trainnetdlnetwork 함수는 이름이 ""인 계층에 자동으로 이름을 할당합니다.

LeakyReLULayer 객체는 이 속성을 문자형 벡터로 저장합니다.

데이터형: char | string

읽기 전용 속성입니다.

계층에 대한 입력값의 개수로, 1로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: double

읽기 전용 속성입니다.

입력값 이름으로, {'in'}으로 반환됩니다. 이 계층은 단일 입력값만 받습니다.

데이터형: cell

읽기 전용 속성입니다.

계층의 출력값 개수로, 1로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: double

읽기 전용 속성입니다.

출력값 이름으로, {'out'}으로 반환됩니다. 이 계층은 단일 출력값만 가집니다.

데이터형: cell

예제

모두 축소

이름이 'leaky1'이고 음의 입력값에 대한 스칼라 승수가 0.1인 Leaky ReLU 계층을 만듭니다.

layer = leakyReluLayer(0.1,'Name','leaky1')
layer = 
  LeakyReLULayer with properties:

     Name: 'leaky1'

   Hyperparameters
    Scale: 0.1000

Layer 배열에 Leaky ReLU 계층을 포함시킵니다.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    leakyReluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    leakyReluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  10x1 Layer array with layers:

     1   ''   Image Input           28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution       16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization   Batch normalization
     4   ''   Leaky ReLU            Leaky ReLU with scale 0.01
     5   ''   2-D Max Pooling       2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution       32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization   Batch normalization
     8   ''   Leaky ReLU            Leaky ReLU with scale 0.01
     9   ''   Fully Connected       10 fully connected layer
    10   ''   Softmax               softmax

알고리즘

모두 확장

참고 문헌

[1] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." In Proc. ICML, vol. 30, no. 1. 2013.

확장 기능

C/C++ 코드 생성
MATLAB® Coder™를 사용하여 C 코드나 C++ 코드를 생성할 수 있습니다.

GPU 코드 생성
GPU Coder™를 사용하여 NVIDIA® GPU용 CUDA® 코드를 생성할 수 있습니다.

버전 내역

R2017b에 개발됨