Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

RegressionOutputLayer

회귀 출력 계층

설명

회귀 계층은 회귀 작업의 손실을 평균 제곱 오차의 절반을 취한 값으로 계산합니다.

생성

regressionLayer를 사용하여 회귀 출력 계층을 만듭니다.

속성

모두 확장

회귀 출력

응답 변수의 이름으로, 문자형 벡터로 구성된 셀형 배열 또는 string형 배열로 지정됩니다. 소프트웨어는 훈련 시점에 훈련 데이터에 따라 자동으로 응답 변수의 이름을 설정합니다. 디폴트 값은 {}입니다.

데이터형: cell

훈련에 사용할 손실 함수로, 'mean-squared-error'로 지정됩니다.

계층

계층 이름으로, 문자형 벡터 또는 string형 스칼라로 지정됩니다. 계층 그래프에 계층을 포함하려면 비어 있지 않은 고유한 계층 이름을 지정해야 합니다. 이 계층을 사용하여 시리즈 신경망을 훈련시킬 때 Name''로 설정하면, 소프트웨어가 훈련 시점에 해당 계층에 자동으로 이름을 할당합니다.

데이터형: char | string

계층의 입력값 개수. 이 계층은 단일 입력값만 받습니다.

데이터형: double

계층의 입력값 이름. 이 계층은 단일 입력값만 받습니다.

데이터형: cell

계층의 출력값 개수. 이 계층에는 출력값이 없습니다.

데이터형: double

계층의 출력값 이름. 이 계층에는 출력값이 없습니다.

데이터형: cell

예제

모두 축소

이름이 'routput'인 회귀 출력 계층을 만듭니다.

layer = regressionLayer('Name','routput')
layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

회귀의 디폴트 손실 함수는 평균 제곱 오차입니다.

Layer 배열에 회귀 출력 계층을 삽입합니다.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution         25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error

세부 정보

모두 확장

R2017a에 개발됨