이상 감지
웨이블릿을 기반으로 희소화된 시간-주파수 특징을 추출하여 이상을 감지합니다.
함수
오토인코더
deepSignalAnomalyDetector | Create signal anomaly detector (R2023a 이후) |
신호 처리 계층
cwtLayer | Continuous wavelet transform layer (R2022b 이후) |
icwtLayer | Inverse continuous wavelet transform layer (R2024b 이후) |
modwtLayer | Maximal overlap discrete wavelet transform layer (R2022b 이후) |
stftLayer | Short-time Fourier transform layer (R2021b 이후) |
istftLayer | Inverse short-time Fourier transform layer (R2024a 이후) |
특징 추출
dlcwt | Deep learning continuous wavelet transform (R2022b 이후) |
dlicwt | Deep learning inverse continuous 1-D wavelet transform (R2024b 이후) |
dlmodwt | Deep learning maximal overlap discrete wavelet transform and multiresolution analysis (R2022a 이후) |
dlstft | Deep learning short-time Fourier transform (R2021a 이후) |
dlistft | Deep learning inverse short-time Fourier transform (R2024a 이후) |
cwtfilterbank | Continuous wavelet transform filter bank |
findchangepts | 신호 내 급격한 변화 찾기 |
findpeaks | 국소 최댓값 구하기 |
modwt | Maximal overlap discrete wavelet transform |
risetime | Rise time of positive-going bilevel waveform transitions |
stft | 단시간 푸리에 변환 |
signalFrequencyFeatureExtractor | Streamline signal frequency feature extraction (R2021b 이후) |
signalTimeFeatureExtractor | Streamline signal time feature extraction (R2021a 이후) |
signalTimeFrequencyFeatureExtractor | Streamline signal time-frequency feature extraction (R2024a 이후) |
waveletScattering | Wavelet time scattering |
데이터저장소 및 데이터 관리
edfheader | Create header structure for EDF or EDF+ file (R2021a 이후) |
edfinfo | Get information about EDF/EDF+ file (R2020b 이후) |
edfread | Read data from EDF/EDF+ file (R2020b 이후) |
edfwrite | Create or modify EDF or EDF+ file (R2021a 이후) |
paddata | Pad data by adding elements (R2023b 이후) |
resize | Resize data by adding or removing elements (R2023b 이후) |
trimdata | Trim data by removing elements (R2023b 이후) |
signalDatastore | Datastore for collection of signals (R2020a 이후) |
블록
Wavelet Scattering | Model wavelet scattering network in Simulink (R2022b 이후) |
Deep Signal Anomaly Detector | Detect signal anomalies using deep learning network in Simulink (R2024a 이후) |
도움말 항목
- Detect Air Compressor Sounds in Simulink Using Wavelet Scattering (DSP System Toolbox)
Use the Wavelet Scattering block and a pretrained deep learning network to classify audio signals.
- Detect Anomalies in ECG Data Using Wavelet Scattering and LSTM Autoencoder in Simulink (DSP System Toolbox)
Use wavelet scattering and deep learning network to detect anomalies in ECG signals.
추천 예제
Anomaly Detection Using Convolutional Autoencoder with Wavelet Scattering Sequences
Detect anomalies in acoustic data using wavelet scattering with the
deepSignalAnomalyDetector
object.
Anomaly Detection Using Autoencoder and Wavelets
Use wavelet-extracted features and an autoencoder to detect arc signals in a DC system.
Crack Identification from Accelerometer Data
Use wavelet and deep learning techniques to detect transverse pavement cracks and localize their position.
Detect Anomalies Using Wavelet Scattering with Autoencoders
Learn how to develop an alert system for predictive maintenance using wavelet scattering and deep learning.
Fault Detection Using Wavelet Scattering and Recurrent Deep Networks
Classify faults in acoustic recordings of air compressors using a wavelet scattering network paired with a recurrent neural network.
Detect Anomalies in Signals Using deepSignalAnomalyDetector
Use a learning-based tool to detect abnormal points or segments in time-series data.
Detect Anomalies in Machinery Using LSTM Autoencoder
Use a long short-term memory autoencoder to detect anomalies in data from an industrial machine.
Fault Detection and Localization in Three-Phase Power Transmission Using Deep Signal Anomaly Detector in Simulink
Detect faults in three-phase power transmission using the Deep Signal Anomaly Detector block.
(DSP System Toolbox)
MATLAB 명령
다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.
명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)