Skip to content
MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 담당 문의
  • 평가판 신청
5:24 Video length is 5:24.
  • Description
  • Full Transcript
  • Related Resources

Understanding Wavelets, Part 2: Types of Wavelet Transforms

From the series: Understanding Wavelets

Explore the workings of wavelet transforms in detail. You will also learn important applications of using wavelet transforms with MATLAB®.

In the previous session, we discussed wavelet concepts like scaling and shifting.  We will now look at two types of wavelet transforms: the Continuous Wavelet Transform and the Discrete Wavelet Transform.  Key applications of the continuous wavelet analysis are: time frequency analysis, and filtering of time localized frequency components. The key application for Discrete Wavelet Analysis are denoising and compression of signals and images. As I mentioned in the previous session, these two transforms differ based on how they discretize the scale and the translation parameters. We will discuss these techniques as they apply in the 1-D scenario. Let’s take a closer look at the continuous wavelet transform – or CWT. You can use this transform to obtain a simultaneous time frequency analysis of a signal. Analytic wavelets are best suited for time frequency analysis as these wavelets do not have negative frequency components.  This list includes some analytic wavelets that are suitable for continuous wavelet analysis.  The output of CWT are coefficients, which are a function of scale or frequency and time. Let’s now discuss the process of constructing different wavelet scales. Recall from our previous video that, when you scale a wavelet by a factor of 2, it results in reducing the equivalent frequency by an octave. With the CWT, you have the added flexibility to analyze the signal at intermediary scales within each octave. This allows for fine scale analysis. This parameter is referred as the number of scales per octave (Nv). The higher the number of scales per octave, the finer the scale discretization. Typical values for this parameter are 10, 12, 16, and 32. The scales are multiplied with the sampling interval of the signal to obtain a physical significance. Here is an example of scales for a bump wavelet with 32 scales per octave. The signal is sampled every 7 micro seconds. This is the corresponding plot with the equivalent frequency for the scales. Notice that the actual scale values are exponential. Now, each scaled wavelet is shifted in time along the entire length of the signal and compared with the original signal. You can repeat this process for all the scales, resulting in coefficients that are a function of the wavelet’s scale and shift parameter. To put it in perspective, a signal with 1000 samples analyzed with 20 scales results in 20,000 coefficients. In this way, you can better characterize oscillatory behavior in signals with the Continuous wavelet transform. The discrete wavelet transform or DWT is ideal for denoising and compressing signals and images, as it helps represent many naturally occurring signals and images with fewer coefficients. This enables a sparser representation. The base scale in DWT is set to 2. You can obtain different scales by raising this base scale to integer values represented in this way. The translation occurs at integer multiples represented in this equation. This process is often referred to as a dyadic scaling and shifting. This kind of sampling eliminates redundancy in coefficients. The output of the transform yields the same number of coefficients as the length of the input signal. Therefore, it requires less memory. The discrete wavelet transform process is equivalent to comparing a signal with discrete multirate filter banks. Conceptually, here is how it works: Given a signal - S, - the signal is first filtered with special lowpass and high pass filter to yield lowpass and highpass sub-bands. We can - refer to these  as A1 and D1.  Half of the samples are discarded after filtering as per the Nyquist criterion. The filters typically have a small number of coefficients and result in good computational performance. These filters also have the ability to reconstruct the sub bands, while cancelling any aliasing that occurs due to downsampling. For the next level of decomposition, the lowpass subband (A1) is iteratively filtered by the same technique to yield narrower subbands - A2 and D2 and so on. The length of the coefficients in each sub band is half of the number of coefficients in the preceding stage. With this technique, you can capture the signal of interest with a few large magnitude DWT coefficients, while the noise in the signal results in smaller DWT coefficients. This way, the DWT helps analyze signals at progressively narrower subbands at different resolutions. It also helps denoise and compress signals. 

 

Related Products

  • Wavelet Toolbox

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz

Feedback

Featured Product

Wavelet Toolbox

  • Request Trial
  • Get Pricing

Up Next:

Learn how to use to wavelets to denoise a signal while preserving its sharp features in this MATLAB Tech Talk by Kirthi Devleker.
5:43
Part 3: An Example Application of the Discrete Wavelet...
View full series (5 Videos)

Related Videos:

1:45
What Is Wavelet Toolbox?
7:51
Understanding Bode Plots, Part 3: Simple Systems
5:17
Understanding Bode Plots, Part 2: What Are They?
3:13
Understanding State Machines, Part 1: What Are They?
3:37
Understanding State Machines, Part 3: Mealy and Moore...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 담당 문의
  • 평가판 신청

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • MATLAB Answers
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 고객 사례
  • 회사 정보
  • Select a Web Site United States
  • 신뢰 센터
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 애플리케이션 상태
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2022 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기