Quantizing Machine Learning Algorithms for Microcontroller Deployment | Coder Summit
From the series: Coder Summit
Microcontrollers such as Cortex-M processors are increasingly important in traditional machine learning algorithms such as linear SVM and k-means clustering, as well as shallow neural networks of five or fewer layers.
This video describes a general approach for a battery transducer algorithm that predicts current based on duty cycle using different voltages and temperatures. However, the application must fit within 3KB of RAM on the microcontroller. The approach uses MATLAB® to extract features to develop a trained classification model using the Classification Learner app. Deployment to microcontrollers and FPGAs is shown using automatic code generation.
However quantization using Fixed-Point Designer™ is critical to develop the fixed-point data types to satisfy the resource constraints on target hardware. We'll show how this approach reduces memory by 67% compared to the single-precision design.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다: .
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)