MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

AI for Engineers: Building an AI System

Johanna Pingel, MathWorks

Artificial intelligence (AI) is a simulation of intelligent human behavior. It is designed to perceive its environment, make decisions, and take action. Get an overview of AI for engineers, and discover the ways in which artificial intelligence fits into an engineering workflow. You’ll learn about steps for building an AI system such as data preparation, modeling, system design, and deployment.

AI is a computer system designed to be intelligent, to perceive its environment, make decisions, and take action. For engineers, there's a lot to consider beyond the broad definition of AI, and more importantly, how to implement it. The result will vary from application to application. But building a successful AI system involves navigating the entire workflow and focusing on more than just training an AI model.

So what does AI mean to engineers? AI means data preparation. At the center of most AI applications is data. And it turns out the data preparation is one of the most critical ingredients to AI success. Without data preparation, you stand to spend a lot of time looking at mediocre AI results and wondering why.

Data preparation is more than having a lot of data or even preprocessing all of the data to be consistent. This is about human insight, what makes data good. It's about considering augmenting data sets with synthetic data and more samples. And it's about getting to clean, labeled data faster by automating the time you spend labeling.

AI means modeling. Yes, I started by saying AI is more than just a model. But, of course, you still need to build the best model possible. Here are some points to consider.

Choosing your algorithms-- are you looking at machine learning or deep learning? Maybe it's a combination. Starting with a complete set of algorithms and pre-built models means you're already ahead of the game, taking advantage of the broader work in the AI community and not starting from scratch.

Tuning your model-- here is where you take your time to identify the optimal set of parameters that will get you to the most robust and accurate model. Getting to an accurate model takes time. Fortunately, adding more hardware can significantly speed up the time to train models with all combinations of parameters, input data, and layers.

AI means system design. The model isn't the result. It's part of a complex system. Let's use an example of a robot with the job of delivering packages.

Adding AI to the robot means the AI must coexist with all other pieces fluidly. You have perception, localization, and path planning using multiple sensors. You have physical systems to control speed and direction handling. These pieces work together to create a complete working system. And it has to work perfectly in all scenarios.

Simulation is how it all comes together. Not only can simulation verify that the pieces will work together correctly, it can ensure the results and reactions are what you expect in every situation. Simulation lets you verify edge cases and test millions of scenarios that would otherwise be too time intensive. It also enables you to validate your model works correctly before deploying to hardware.

Lastly, AI means deployment. You've trained your model. You've tested your system. It's time to get AI out into the world.

Since a wide range of applications use AI, there are a wide range of deployment requirements, from ECUs in cars, to edge systems in chemical plants, to enterprise-based systems in manufacturing, or cloud-based streaming systems to collect data from multiple locations. You can integrate AI into any part of these systems. So you need AI models that provide flexibility to deploy to all possible platforms.

There's a lot to consider when incorporating AI into systems. As engineers, it's important to focus on more than just building a model, but rather the entire AI workflow.

Related Products

  • MATLAB
  • Deep Learning Toolbox
  • Statistics and Machine Learning Toolbox
Related Information
Learn more about AI

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

12:34
Performing Power System Studies, Part 2: Building Network...

Related Videos:

44:44
A Predictive Model of Building Power Usage Through PI...
24:54
Building an Internal Risk System with MATLAB
33:13
Building a Matrix in a For Loop
2:25
Mission on Mars Robot Challenge: Building a Position...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기