This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

roiInputLayer

ROI input layer for Fast R-CNN

Description

An ROI input layer inputs images to a Fast R-CNN object detection network.

Creation

Syntax

layer = roiInputLayer
layer = roiInputLayer('Name',Name)

Description

layer = roiInputLayer creates an ROI input layer.

example

layer = roiInputLayer('Name',Name) creates an ROI input layer and sets the optional Name property.

Properties

expand all

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Number of outputs of the layer. This layer has a single output only.

Data Types: double

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

collapse all

Create an ROI input layer.

roiInput = roiInputLayer('Name','roi_input');

Create an ROI max pooling layer with output size [4 4].

outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');

Add the layers to a LayerGraph.

lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);

Specify that the output of the ROI input layer is the 'roi' input of the ROI max pooling layer.

lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

Introduced in R2018b