Simulink에서의 머신러닝
Simulink를 사용한 머신러닝 워크플로 확장
Statistics and Machine Learning Toolbox™에 포함되어 있는 Statistics and Machine Learning 블록 라이브러리의 블록을 사용하여 Simulink® 모델에서 머신러닝 기능을 구현합니다. 이 툴박스는 다음과 같은 워크플로를 수행하는 블록을 제공합니다.
분류 예측 블록 또는 회귀 예측 블록을 사용하여, 훈련된 분류 모델 객체 또는 회귀 모델 객체를 Simulink에 가져옵니다.
분류 학습기 앱 또는 회귀 학습기 앱에서 머신러닝 모델을 훈련시키고 해당 모델을 Simulink로 내보냅니다.
Simulink에서 점진적 학습 블록을 사용하여 머신러닝 모델에서 실시간으로 드리프트를 지속적으로 업데이트하고 모니터링합니다.
데이터에서 쿼리 점에 대한 최근접이웃을 찾고 KNN Search 블록을 사용하여 Simulink에서 군집 분석을 수행합니다.
Python 연동실행 블록을 사용하여, 훈련된 Python® 머신러닝 모델을 Simulink에서 연동실행합니다.
블록
도움말 항목
분류
- Predict Class Labels Using ClassificationSVM Predict Block
This example shows how to use the ClassificationSVM Predict block for label prediction in Simulink®. - Predict Class Labels Using ClassificationTree Predict Block
Train a classification decision tree model using the Classification Learner app, and then use the ClassificationTree Predict block for label prediction. - Predict Class Labels Using ClassificationLinear Predict Block
This example shows how to use the ClassificationLinear Predict block for label prediction in Simulink®. (R2023a 이후) - Predict Class Labels Using ClassificationECOC Predict Block
Train an ECOC classification model, and then use the ClassificationECOC Predict block for label prediction. (R2023a 이후) - Predict Class Labels Using ClassificationEnsemble Predict Block
Train a classification ensemble model with optimal hyperparameters, and then use the ClassificationEnsemble Predict block for label prediction. - Predict Class Labels Using ClassificationNaiveBayes Predict Block
Train a naive Bayes classification model, and then use the ClassificationNaiveBayes Predict block for label prediction. (R2024a 이후) - Predict Class Labels Using ClassificationNeuralNetwork Predict Block
Train a neural network classification model, and then use the ClassificationNeuralNetwork Predict block for label prediction. - Predict Class Labels Using ClassificationKNN Predict Block
Train a nearest neighbor classification model, and then use the ClassificationKNN Predict block for label prediction. - Predict Class Labels Using ClassificationDiscriminant Predict Block
Train a discriminant analysis classification model, and then use the ClassificationDiscriminant Predict block for label prediction. (R2023b 이후) - Predict Class Labels Using ClassificationKernel Predict Block
Train a Gaussian kernel classification model, and then use the ClassificationKernel Predict block for label prediction. (R2024b 이후)
회귀
- Predict Responses Using RegressionSVM Predict Block
Train a support vector machine (SVM) regression model using the Regression Learner app, and then use the RegressionSVM Predict block for response prediction. - Predict Responses Using RegressionTree Predict Block
This example shows how to use the RegressionTree Predict block for response prediction in Simulink®. - Predict Responses Using RegressionLinear Predict Block
This example shows how to use the RegressionLinear Predict block for response prediction in Simulink®. (R2023a 이후) - Predict Responses Using RegressionEnsemble Predict Block
Train a regression ensemble model with optimal hyperparameters, and then use the RegressionEnsemble Predict block for response prediction. - Predict Responses Using RegressionNeuralNetwork Predict Block
Train a neural network regression model, and then use the RegressionNeuralNetwork Predict block for response prediction. - Predict Responses Using RegressionGP Predict Block
Train a Gaussian process (GP) regression model, and then use the RegressionGP Predict block for response prediction. - Predict Responses Using RegressionKernel Predict Block
This example shows how to use the RegressionKernel Predict block for response prediction in Simulink®. (R2024b 이후)
점진적 학습
- Perform Incremental Learning Using IncrementalClassificationLinear Fit and Predict Blocks
Perform incremental learning with the IncrementalClassificationLinear Fit block and predict labels with the IncrementalClassificationLinear Predict block. (R2023b 이후) - Perform Incremental Learning Using IncrementalRegressionLinear Fit and Predict Blocks
Perform incremental learning with the IncrementalRegressionLinear Fit block and predict responses with the IncrementalRegressionLinear Predict block. (R2023b 이후) - Perform Incremental Learning Using IncrementalClassificationECOC Fit and Predict Blocks
Perform incremental learning with the IncrementalClassificationECOC Fit block and predict labels with the IncrementalClassificationECOC Predict block. (R2024a 이후) - Perform Incremental Learning Using IncrementalClassificationKernel Fit and Predict Blocks
Perform incremental learning with the IncrementalClassificationKernel Fit block and predict labels with the IncrementalClassificationKernel Predict block. (R2024b 이후) - Perform Incremental Learning Using IncrementalRegressionKernel Fit and Predict Blocks
Perform incremental learning with the IncrementalRegressionKernel Fit block and predict responses with the IncrementalRegressionKernel Predict block. (R2024b 이후) - Perform Incremental Learning and Track Performance Metrics Using Update Metrics Block
Perform incremental learning and track performance metrics with the Update Metrics block. (R2023b 이후) - Monitor Drift Using Detect Drift Block
This example shows how to use the Detect Drift block for monitoring drift in a data stream in Simulink®. (R2024b 이후) - In-Place Model Update of Offline Linear Model Using IncrementalClassificationLinear Predict Block
Perform in-place model update without regenerating deployed code. (R2025a 이후)
점진적 학습 템플릿
- Configure Simulink Template for Conditionally Enabled Incremental Linear Classification
Configure the Simulink Enabled Execution Incremental Learning template to perform incremental linear classification. (R2024a 이후) - Configure Simulink Template for Conditionally Enabled Incremental Linear Regression
Configure the Simulink Enabled Execution Incremental Learning template to perform incremental linear regression. (R2024a 이후) - Configure Simulink Template for Rate-Based Incremental Linear Classification
Configure the Simulink Rate-Based Incremental Learning template to perform incremental linear classification. (R2024a 이후) - Configure Simulink Template for Rate-Based Incremental Linear Regression
Configure the Simulink Rate-Based Incremental Learning template to perform incremental linear regression. (R2024a 이후) - Configure Simulink Template for Drift-Aware Incremental Learning
Configure the Drift-Aware Training for Incremental Learning template to perform drift-aware learning. (R2025a 이후)
군집 분석과 이상 감지
- Find Nearest Neighbors Using KNN Search Block
Train a nearest neighbor searcher model, and then use the KNN Search block for label prediction. (R2023b 이후)
Python 연동실행
- Predict Cluster Assignments Using Python Scikit-learn Model Predict Block
This example shows how to use the Scikit-learn Model Predict block for prediction in Simulink®. - Predict Responses Using Custom Python Model in Simulink
This example shows how to use the Custom Python Model Predict block for prediction in Simulink®.
Simulink로 학습기 앱 모델 내보내기
- Export Classification Model to Make Predictions in Simulink
Train a model in Classification Learner, and then export the model to Simulink. - Export Regression Model to Make Predictions in Simulink
Train a model in Regression Learner, and then export the model to Simulink.
코드 생성
- System Objects for Classification and Code Generation
Generate code from a System object™ for making predictions using a trained classification model, and use the System object in a Simulink model. - Predict Class Labels Using MATLAB Function Block
Generate code from a Simulink model that classifies data using an SVM model. - Predict Class Labels Using Stateflow
Generate code from a Stateflow® model that classifies data using a discriminant analysis classifier.
관련 정보
- Simulink를 사용한 딥러닝 (Deep Learning Toolbox)