insfilterNonholonomic
Estimate pose with nonholonomic constraints
Description
The insfilterNonholonomic
object implements sensor fusion of
inertial measurement unit (IMU) and GPS data to estimate pose in the NED (or ENU) reference
frame. IMU data is derived from gyroscope and accelerometer data. The filter uses a 16-element
state vector to track the orientation quaternion, velocity, position, and IMU sensor biases.
The insfilterNonholonomic
object uses an extended Kalman filter to estimate
these quantities.
Creation
Syntax
Description
creates an
filter
= insfilterNonholonomicinsfilterErrorState
object with default property values.
allows you to specify the reference frame, filter
= insfilterNonholonomic('ReferenceFrame',RF
)RF
, of the
filter
.
sets one or more properties using name-value arguments in addition to any of the previous
input arguments.filter
= insfilterNonholonomic(___,Name=Value
)
Input Arguments
Properties
Object Functions
correct | Correct states using direct state measurements for
insfilterNonholonomic |
residual | Residuals and residual covariances from direct state measurements for
insfilterNonholonomic |
fusegps | Correct states using GPS data for
insfilterNonholonomic |
residualgps | Residuals and residual covariance from GPS measurements for
insfilterNonholonomic |
pose | Current orientation and position estimate for
insfilterNonholonomic |
predict | Update states using accelerometer and gyroscope data for
insfilterNonholonomic |
reset | Reset internal states for insfilterNonholonomic |
stateinfo | Display state vector information for
insfilterNonholonomic |
tune | Tune insfilterNonholonomic parameters to reduce estimation
error |
copy | Create copy of insfitlerNonholonomic |
Examples
Algorithms
Note: The following algorithm only applies to an NED reference frame.
insfilterNonholonomic
uses a 16-axis error state Kalman filter structure to
estimate pose in the NED reference frame. The state is defined as:
where
q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame rotation from the platform's current orientation to the local NED coordinate system.
gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
Given the conventional formulation of the state transition function,
the predicted state estimate is:
where
Δt –– IMU sample time.
gN, gE, gD –– Constant gravity vector in the NED frame.
accelX, accelY, accelZ –– Acceleration vector in the body frame.
λaccel –– Accelerometer bias decay factor.
λgyro –– Gyroscope bias decay factor.
References
[1] MunguÃa, R. "A GPS-Aided Inertial Navigation System in Direct Configuration." Journal of applied research and technology. Vol. 12, Number 4, 2014, pp. 803 – 814.
Extended Capabilities
Version History
Introduced in R2018b