라이다 추적
아래의 예제에서는 trackerJPDA 및 trackerGridRFS와 같은 라이다 검출과 다중 객체 추적기를 사용하여 확장 객체를 추적합니다.
추천 예제
Highway Vehicle Tracking Using Multi-Sensor Data Fusion
Track vehicles on a highway with commonly used sensors such as radar, camera, and lidar. In this example, you configure and run a Joint Integrated Probabilistic Data Association (JIPDA) tracker to track vehicles using recorded data from a suburban highway driving scenario.
- R2024b 이후
- 라이브 스크립트 열기
Detect, Classify, and Track Vehicles Using Lidar
Detect, classify, and track vehicles by using lidar point cloud data captured by a lidar sensor mounted on an ego vehicle. The lidar data used in this example is recorded from a highway-driving scenario contained in WPI Lidar Visual SLAM Dataset [1]. In this example, the point cloud data is segmented to determine the class of objects using the PointSeg network. A joint probabilistic data association (JPDA) tracker with an interactive multiple model filter is used to track the detected vehicles.
Track Vehicles Using Lidar: From Point Cloud to Track List
Track vehicles using measurements from a lidar sensor mounted on top of an ego vehicle.
Object-Level Fusion of Lidar and Camera Data for Vehicle Tracking
Fuse lidar and camera data to track vehicles using a JIPDA tracker.
- R2023a 이후
- 라이브 스크립트 열기
Grid-Based Tracking in Urban Environments Using Multiple Lidars
Track moving objects with multiple lidars using a grid-based tracker. A grid-based tracker enables early fusion of data from high-resolution sensors such as radars and lidars to create a global object list.
Fuse Prerecorded Lidar and Camera Data to Generate Vehicle Track List for Scenario Generation
Fuse prerecorded lidar and camera object detections to create a smoothed vehicle track list.
- R2023a 이후
- 라이브 스크립트 열기
Track Vehicles Using Lidar Data in Simulink
Track vehicles using measurements from a lidar sensor mounted on top of an ego vehicle. Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large number of points, commonly known as a point cloud. The example illustrates the workflow in Simulink for processing the point cloud and tracking the objects. The lidar data used in this example is recorded from a highway driving scenario. You use the recorded data to track vehicles with a joint probabilistic data association (JPDA) tracker and an interacting multiple model (IMM) approach. The example closely follows the Track Vehicles Using Lidar: From Point Cloud to Track List MATLAB® example.
Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink
Track moving objects with multiple lidars using a grid-based tracker in Simulink. You use the Grid-Based Multi Object Tracker Simulink block to define the grid-based tracker. This Grid-based tracker uses dynamic occupancy grid map as an intermediate representation of the environment. This example closely follows the Grid-Based Tracking in Urban Environments Using Multiple Lidars MATLAB® example.
- R2021b 이후
- 모델 열기
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)




