사전 훈련된 신경망
사전 훈련된 영상 신경망을 사용하여 새로운 작업을 빠르게 학습
전이 학습을 사용하여 사전 훈련된 신경망이 제공하는 지식을 활용해 새 영상 데이터의 새 패턴을 학습합니다. 전이 학습을 통해 사전 훈련된 영상 분류 신경망을 미세 조정하는 것이 일반적으로 처음부터 훈련시키는 것보다 훨씬 더 빠르고 쉽습니다. 사전 훈련된 심층 신경망을 사용하면 새로운 신경망을 정의하고 훈련시키지 않고도, 수백만 개의 영상을 갖고 있지 않아도, 강력한 GPU 없이도 새 작업을 위한 모델을 빠르게 만들 수 있습니다. 사용 가능한 사전 훈련된 신경망을 살펴보려면 심층 신경망 디자이너를 사용하십시오.
앱
심층 신경망 디자이너 | 딥러닝 신경망을 설계하고 시각화합니다 |
함수
블록
도움말 항목
- 딥러닝을 사용하여 웹캠 영상 분류하기
이 예제에서는 사전 훈련된 심층 컨벌루션 신경망 GoogLeNet을 사용하여 웹캠의 영상을 실시간으로 분류하는 방법을 보여줍니다.
- Retrain Neural Network to Classify New Images
This example shows how to retrain a pretrained SqueezeNet neural network to perform classification on a new collection of images.
- 사전 훈련된 심층 신경망
분류, 전이 학습 및 특징 추출을 위해 사전 훈련된 컨벌루션 신경망을 다운로드하고 사용하는 방법을 알아봅니다.
- MATLAB의 딥러닝
사전 훈련된 신경망 및 전이 학습, 그리고 GPU, CPU, 클러스터 및 클라우드에서의 훈련 등 분류 및 회귀에 컨벌루션 신경망을 사용하여 MATLAB®의 딥러닝 기능을 알아봅니다.
- 딥러닝 팁과 요령
딥러닝 신경망의 정확도를 높이는 방법을 알아봅니다.
- Data Sets for Deep Learning
Discover data sets for various deep learning tasks.