Main Content

qfunc

Description

y = qfunc(x) returns the output of the Q function for each element of the real-valued input. The Q function is (1 – f), where f is the result of the cumulative distribution function of the standardized normal random variable. For more information, see Algorithms.

example

Examples

collapse all

Calculate the Q function values for a real-valued input vector.

x = -4:0.1:4;
y = qfunc(x);

Plot the results.

plot(x,y)
grid

Figure contains an axes object. The axes object contains an object of type line.

Calculate the QPSK error probability at an Eb/N0 setting of 7 dB by using the Q function.

Convert the Eb/N0 in dB to its linear equivalent.

ebnodB = 7;
ebno = 10^(ebnodB/10);

Using the Q function, calculate the QPSK error probability, Pb=Q(2EbN0).

Pb = qfunc(sqrt(2*ebno))
Pb = 
7.7267e-04

Input Arguments

collapse all

Input, specified as a real-valued scalar, matrix, or array.

Data Types: double

Output Arguments

collapse all

Q function output, returned as a scalar, matrix, or array. y has the same dimensions as input x. Output values are in the range [0, 1].

Algorithms

For a scalar x, the Q function is (1 – f), where f is the result of the cumulative distribution function of the standardized normal random variable. The Q function is defined as

Q(x)=12πxexp(t2/2)dt

The Q function is related to the complementary error function, erfc, according to

Q(x)=12erfc(x2)

Version History

Introduced before R2006a

See Also

Functions