MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

What Is Deep Learning Toolbox?

Gabriel Ha, MathWorks

Deep Learning Toolbox™ provides a framework for designing and implementing deep neural networks with algorithms, pretrained models, and apps. You can use convolutional neural networks (ConvNets, CNNs) and long short-term memory (LSTM) networks to perform classification and regression on image, time-series, and text data. You can build network architectures such as generative adversarial networks (GANs) and Siamese networks using automatic differentiation, custom training loops, and shared weights. With the Deep Network Designer app, you can design, analyze, and train networks graphically. The Experiment Manager app helps you manage multiple deep learning experiments, keep track of training parameters, analyze results, and compare code from different experiments. You can visualize layer activations and graphically monitor training progress.

You can exchange models with TensorFlow™ and PyTorch through the ONNX format and import models from TensorFlow-Keras and Caffe. The toolbox supports transfer learning with DarkNet53, ResNet-50, NASNet, SqueezeNet and many other pretrained models.

You can speed up training on a single- or multiple-GPU workstation (with Parallel Computing Toolbox™), or scale up to clusters and clouds, including NVIDIA® GPU Cloud and Amazon EC2® GPU instances (with MATLAB Parallel Server™).

Deep Learning Toolbox provides algorithms and tools for creating, training, and analyzing deep networks. You can use deep learning with CNNs for image classification and deep learning with LSTM networks for time series and sequence data. Deep Learning Toolbox comes with numerous prebuilt examples you can leverage, including classifying moving objects in a scene and detecting facial features with regression. You can also build advanced network architectures like GANs and Siamese networks using custom training loops, shared weights, and automatic differentiation.

In 20a, we’re introducing Experiment Manager app to manage multiple deep learning experiments. You can keep track of training parameters, analyze results, and compare code from different experiments as well as use visualization tools such as training plots and confusion matrices to evaluate trained models. We’ve also updated the Deep Network Designer app for easy selection of existing pretrained models at the start for transfer learning workflows, or you can also design a network from scratch using the drag-and-drop interface that allows you to visualize the layers and connections and add learnable layer parameters. In 20a, after designing and analyzing your network, you can import your data, inspect your data, set training options like learning rate and number of epochs, and finally train the network you designed, all in the app itself. Finally, export your network to the workspace, or generate its corresponding MATLAB code so your colleagues can easily reproduce and refine your work.

You can create network architectures from scratch or by utilizing transfer learning with pretrained networks like ResNet and Inception. Deep Learning Toolbox supports interoperability with other frameworks including TensorFlow, PyTorch, and MXNet. You can also import networks and network architectures from TensorFlow-Keras and Caffe. And since Deep Learning Toolbox supports the ONNX model format, you can import models, leverage MATLAB for tasks like visualizing and optimizing your network, and then export your model for use in other deep learning frameworks.

You can speed up training on a single- or multiple-GPU workstation or scale to clusters and clouds, including NVIDIA GPU Cloud and Amazon EC2 GPU instances.

Deep Learning Toolbox can be used in conjunction with code generation tools, enabling you to deploy deep learning algorithms to targets like NVIDIA GPUs and Intel and ARM processors.  This auto-generated code provides a significant performance boost in inference applications.

If you need a smaller footprint of your network you trained, you can also perform int8 quantization on the model and target NVIDIA GPUs for embedded deployment.

For more information about Deep Learning Toolbox, please check out the Deep Learning Toolbox product page, and don’t hesitate to contact us with any questions.

Related Products

  • Deep Learning Toolbox
  • Computer Vision Toolbox
  • GPU Coder

Feedback

Featured Product

Deep Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

7:35
Deep Learning for Computer Vision with MATLAB (Highlights)

Related Videos:

42:27
Machine Learning and Computer Vision for Medical Imaging...
40:27
Machine Learning and Computer Vision for Biological Imaging...
27:59
Deep Learning for Computer Vision
2:19
Indian Space Research Organization Simulates Hybrid...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기