MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

Machine Learning with MATLAB Overview

Seth DeLand, MathWorks

Learn how machine learning tools in MATLAB® can be used to solve regression, clustering, and classification problems.

Machine learning uses algorithms that learn from data to help make better decisions. Examples of machine learning applications include clustering, where objects are grouped into bins with similar traits; regression, where relationships among variables are estimated; and classification, where a trained model is used to predict a categorical response. Let's take a look at the steps in a machine learning workflow. You might have data in many places, such as multiple spreadsheets and databases.

MATLAB provides interactive tools that make it easy to perform a variety of machine learning tasks, including connecting to and importing data. Apps can generate MATLAB code, enabling you to automate tasks. Oftentimes, data has missing or incorrect values. Functions for finding, removing, and cleaning data enable you to get your data ready for analysis.

Information such as data trends, patterns, and outliers can help us decide which machine learning techniques to apply. Using data visualization tools, you can explore your data, identify key traits, and communicate your findings. It's not always obvious what the best machine learning algorithm is going to be for a particular problem. Statistics Toolbox has a wide variety of algorithms to choose from. And these algorithms use a similar syntax.

This enables you to quickly try out several different machine learning approaches, like in this example, where we apply logistic regression, discriminate analysis, and K-nearest neighbors to our dataset. Some machine learning algorithms are computationally intensive. You can speed up these algorithms using built-in support for parallel computing.

Neural networks are also a common approach for supervised and unsupervised learning. Neural Network Toolbox provides additional algorithms and point-and-click apps that guide you through the process of training and testing neural networks.

Having trained different models, it's essential to compare their performance on test data so that we can gain confidence in our results. In this example, we compare how accurately different algorithms correctly classified our test data. Oftentimes, models need to be refined in order for them to run faster in the end application. Tools per model refinement and reduction enable you to analyze the effect of algorithm parameters and identify a subset of features that can be used to produce similar results.

Machine learning algorithms are often used in enterprise systems. Using MATLAB Compiler with add-on builder products, you can integrate your MATLAB models directly into applications written in Java, and .NET models can also be deployed as Excel add-ins and standalone executables. For more information on machine learning, click a link below.

Related Products

  • MATLAB

Learn More

Get Training: Machine Learning with MATLAB

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

27:46
Machine Learning with MATLAB

Related Videos:

39:11
Predictive Modeling Using Machine Learning - A Mining Case...
43:19
Using Machine Learning to Model Complex Systems
50:23
Predictive Modelling Made Easy with the New Machine...
6:15
Technical Computing with MATLAB, Part 1: Overview of...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기