MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

Top 5 Reasons to Use MATLAB for Deep Learning

Johanna Pingel, MathWorks

Learn how MATLAB® can help with any part of the deep learning workflow: from preprocessing through deployment. This video provides a high-level overview of deep learning with MATLAB. It describes the complete workflow, and it shows how MATLAB can help with deep learning applications at various stages, including importing and preprocessing images, importing pretrained models, training models with GPUs, debugging deep learning results, and deploying deep learning models to hardware including embedded GPUs.

Deep learning continues to gain popularity, expanding to nearly every application. However, it's a challenging task to go from a deep learning model to a real AI-driven system. Here are five reasons to use MATLAB® for your next deep learning application:

MATLAB has interactive deep learning apps for labeling.

This includes signal data, audio data, images, and video.

Often, people underestimate the amount of time needed to label data, so apps that help automate this process can get you to training models and seeing results quicker.

MATLAB can help with generating synthetic data when you don’t have enough data of the right scenarios.

In the case of automated driving, you can author scenarios and simulate the output of different sensors using a 3D simulation environment.

In radar and communications, this includes generating data for waveform-modulation-identification and target classification applications.

MATLAB has a variety of ways to interact and transfer data between deep learning frameworks.

MATLAB supports ONNX to import and export models between other frameworks. A model designed in PyTorch, for example, can be brought into MATLAB, and models trained in MATLAB can be exported using the ONNX framework.

MATLAB also supports Python interoperability: You can call Python from MATLAB and MATLAB from Python. 

We continue to expand our support for pretrained models which have been tested and vetted by deep learning experts. 

Next, in addition to C, C++, and HDL, MATLAB creates optimized deep learning CUDA code for NVIDIA GPUs, including the preprocessing and post processing code required to run the entire algorithm.

Optimized CUDA with TensorRT makes inference very fast. And the code can be deployed to embedded NVIDIA GPUs.

Finally, MATLAB has specialized toolboxes and functionality specifically for:

  • Reinforcement Learning
  • Automated Driving
  • Natural Language Processing
  • Medical Image Processing
  • Computer Vision

Not to mention incorporating other techniques like traditional machine learning and data science.

We also have advanced features like GANs, automatic differentiation, and the ability to analyze and debug layers.

You can get a free trial of our deep learning software on our web site. If you’re just starting out or have been working in another deep learning framework, we have lots of examples and videos to help you get started quickly in MATLAB. 

Related Products

  • MATLAB
  • Deep Learning Toolbox

Learn More

Get Ready for AI with MATLAB
Related Information
Learn more

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

47:59
Top 10 Productivity Tools in MATLAB

Related Videos:

22:43
Use of MATLAB for Solvency II Capital Modelling: The...
27:59
Deep Learning for Computer Vision
2:37
Project-Based Learning: Students learn how to better use...
35:33
Project-Based Learning for Signal Processing and...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기