Generate CUDA Code for a Fog Rectification Algorithm
GPU Coder™ generates optimized CUDA® code from MATLAB® code for deep learning, embedded vision, and autonomous systems. The generated code calls optimized NVIDIA® CUDA libraries and can be integrated into your project as source code, static libraries, or dynamic libraries. It can also be used for prototyping on GPUs, such as the NVIDIA Tesla® and NVIDIA Tegra®.
This video shows an example of taking a foggy image as input and producing a defogged image. The image processing algorithm is a typical implementation of a fog rectification algorithm and has several stages, including dark channel estimation, anisotropic diffusion, inverse Koschmieder's law, and histogram stretching. It uses conv2, rgb2gray, and imhist functions. Once the code is generated, a MEX-file is created and is then executed back in the MATLAB environment where you will see a 5X speedup compared to running the algorithm on the CPU.
At this point, you can take the generated CUDA code and run it on any NVIDIA GPU, including the embedded Tegra GPUs.
Published: 31 Oct 2017
Featured Product
GPU Coder
Up Next:
Related Videos:
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)