Skip to content
MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 담당 문의
  • 평가판 신청
25:18 Video length is 25:18.
  • Description
  • Related Resources

Content based image retrieval (CBIR) using deep neural networks

Christopher Thiele, Shell International E&P, Inc.
Nishank Saxena, Shell International E&P, Inc.
Detlef Hohl, Shell International E&P, Inc.

Images and image processing are deeply embedded in many business workflows in the energy industry. Shell maintains image stores in excess of 50 PBytes in the form of (e.g.) seismic data, microcomputer tomography (CT) and microscopy images of rocks and catalysts, borehole core and sidewall images, satellite and drone image data and asset surveillance camera data at multiple resolutions, scales and wavelengths. Finding similar images in our large data stores based on content and not metadata is a generic task. Metadata are often out of date, subject to change, or simply not available. Traditional image processing methods such as feature identification work well for small and few images but do not scale to large images or data repositories due to computational demand.

Modern deep learning excels at extracting relevant features from images based on supervised and unsupervised learning “by itself” and with little computational effort. In this contribution we focus on “Digital Rock” technology where scanned images of rocks are analyzed using computer analysis and computer simulation to replace expensive and time-consuming laboratory experiments. Experts often wish to consult existing laboratory and pre-computed simulation results for rock samples similar to newly acquired ones. We discuss how CBIR algorithms can help identify similar rock samples. We explore the challenges that micro-CT pore images pose to CBIR methods, and we evaluate the performance of CBIR algorithms based on traditional feature extraction methods as well as deep learning techniques.

After a comparison of different deep learning architectures and training approaches, we conclude with an outlook on scalable CBIR algorithms and implementations for large collections of three-dimensional pore images. Our CBIR algorithms were implemented using MATLAB's toolboxes for parallel computing, deep learning, and image processing. The MATLAB platform allowed us to efficiently develop and compare numerous algorithms and ideas in an interactive, GPU-accelerated environment.

Related Products

  • MATLAB Parallel Server
  • Computer Vision Toolbox
  • Deep Learning Toolbox
  • Image Processing Toolbox

View slides
MATLAB and Simulink Conferences

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

MATLAB Parallel Server

  • Request Trial
  • Get Pricing

Up Next:

5:11
Color-Based Segmentation with Live Image Acquisition

Related Videos:

56:56
Brainstorm: Imaging Neural Activity at the Speed of Brain...
2:12
What Is Image Processing Toolbox?
48:56
Medical Image Processing with MATLAB
46:05
Rapid Development of Image Processing Algorithms with MATLAB

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 담당 문의
  • 평가판 신청

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • MATLAB Answers
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 고객 사례
  • 회사 정보
  • Select a Web Site United States
  • 신뢰 센터
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 애플리케이션 상태
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2022 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기