image thumbnail

Deep Learning: Image anomaly detection for production line ~

version 1.0.1 (12.3 MB) by Takuji Fukumoto
Use pre-trained AlexNet and 1-class SVM for anomaly detection

894 Downloads

Updated 25 Dec 2020

From GitHub

View license on GitHub

When we apply deeplearning to anomaly detection for image on production line, there are few abnomal units to train your classifier.
Through this demo, you can learn how to try anomaly detection without training data of abnomal unit and labeling.
-kernel methods with 1class SVM and pre-trained AlexNet
-focus on production line and manufacturing.
-unsupervised classification (without labeling)
-feature visualization with t-SNE
This demo include hundreds training and test images. So you can try this now.

You can download the AlexNet support package here:
https://www.mathworks.com/matlabcentral/fileexchange/59133-neural-network-toolbox-tm--model-for-alexnet-network

Cite As

Takuji Fukumoto (2021). Deep Learning: Image anomaly detection for production line ~ (https://github.com/mathworks/Deep-Learning-Image-anomaly-detection-for-production-line/releases/tag/1.0.1), GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2017a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.