주요 콘텐츠

다음에 대한 결과:

Untapped Potential for Output-arguments Block
MATLAB has a very powerful feature in its arguments blocks. For example, the following code for a function (or method):
  • clearly outlines all the possible inputs
  • provides default values for each input
  • will produce auto-complete suggestions while typing in the Editor (and Command Window in newer versions)
  • checks each input against validation functions to enforce size, shape (e.g., column vs. row vector), type, and other options (e.g., being a member of a set)
function [out] = sample_fcn(in)
arguments(Input)
in.x (:, 1) = []
in.model_type (1, 1) string {mustBeMember(in.model_type, ...
["2-factor", "3-factor", "4-factor"])} = "2-factor"
in.number_of_terms (1, 1) {mustBeMember(in.number_of_terms, 1:5)} = 1
in.normalize_fit (1, 1) logical = false
end
% function logic ...
end
If you do not already use the arguments block for function (or method) inputs, I strongly suggest that you try it out.
The point of this post, though, is to suggest improvements for the output-arguments block, as it is not nearly as powerful as its input-arguments counterpart. I have included two function examples: the first can work in MATLAB while the second does not, as it includes suggestions for improvements. Commentary specific to each function is provided completely before the code. While this does necessitate navigating back and forth between functions and text, this provides for an easy comparison between the two functions which is my main goal.
Current Implementation
The input-arguments block for sample_fcn begins the function and has already been discussed. A simple output-arguments block is also included. I like to use a single output so that additional fields may be added at a later point. Using this approach simplifies future development, as the function signature, wherever it may be used, does not need to be changed. I can simply add another output field within the function and refer to that additional field wherever the function output is used.
Before beginning any logic, sample_fcn first assigns default values to four fields of out. This is a simple and concise way to ensure that the function will not error when returning early.
The function then performs two checks. The first is for an empty input (x) vector. If that is the case, nothing needs to be done, as the function simply returns early with the default output values that happen to apply to the inability to fit any data.
The second check is for edge cases for which input combinations do not work. In this case, the status is updated, but default values for all other output fields (which are already assigned) still apply, so no additional code is needed.
Then, the function performs the fit based on the specified model_type. Note that an otherwise case is not needed here, since the argument validation for model_type would not allow any other value.
At this point, the total_error is calculated and a check is then made to determine if it is valid. If not, the function again returns early with another specific status value.
Finally, the R^2 value is calculated and a fourth check is performed. If this one fails, another status value is assigned with an early return.
If the function has passed all the checks, then a set of assertions ensure that each of the output fields are valid. In this case, there are eight specific checks, two for each field.
If all of the assertions also pass, then the final (successful) status is assigned and the function returns normally.
function [out] = sample_fcn(in)
arguments(Input)
in.x (:, 1) = []
in.model_type (1, 1) string {mustBeMember(in.model_type, ...
["2-factor", "3-factor", "4-factor"])} = "2-factor"
in.number_of_terms (1, 1) {mustBeMember(in.number_of_terms, 1:5)} = 1
in.normalize_fit (1, 1) logical = false
end
arguments(Output)
out struct
end
%%
out.fit = [];
out.total_error = [];
out.R_squared = NaN;
out.status = "Fit not possible for supplied inputs.";
%%
if isempty(in.x)
return
end
%%
if ((in.model_type == "2-factor") && (in.number_of_terms == 5)) || ... % other possible logic
out.status = "Specified combination of model_type and number_of_terms is not supported.";
return
end
%%
switch in.model_type
case "2-factor"
out.fit = % code for 2-factor fit
case "3-factor"
out.fit = % code for 3-factor fit
case "4-factor"
out.fit = % code for 4-factor fit
end
%%
out.total_error = % calculation of error
if ~isfinite(out.total_error)
out.status = "The total_error could not be calculated.";
return
end
%%
out.R_squared = % calculation of R^2
if out.R_squared > 1
out.status = "The R^2 value is out of bounds.";
return
end
%%
assert(iscolumn(out.fit), "The fit vector is not a column vector.");
assert(size(out.fit) == size(in.x), "The fit vector is not the same size as the input x vector.");
assert(isscalar(out.total_error), "The total_error is not a scalar.");
assert(isfinite(out.total_error), "The total_error is not finite.");
assert(isscalar(out.R_squared), "The R^2 value is not a scalar.");
assert(isfinite(out.R_squared), "The R^2 value is not finite.");
assert(isscalar(out.status), "The status is not a scalar.");
assert(isstring(out.status), "The status is not a string.");
%%
out.status = "The fit was successful.";
end
Potential Implementation
The second function, sample_fcn_output_arguments, provides essentially the same functionality in about half the lines of code. It is also much clearer with respect to the output. As a reminder, this function structure does not currently work in MATLAB, but hopefully it will in the not-too-distant future.
This function uses the same input-arguments block, which is then followed by a comparable output-arguments block. The first unsupported feature here is the use of name-value pairs for outputs. I would much prefer to make these assignments here rather than immediately after the block as in the sample_fcn above, which necessitates four more lines of code.
The mustBeSameSize validation function that I use for fit does not exist, but I really think it should; I would use it a lot. In this case, it provides a very succinct way of ensuring that the function logic did not alter the size of the fit vector from what is expected.
The mustBeFinite validation function for out.total_error does not work here simply because of the limitation on name-value pairs; it does work for regular outputs.
Finally, the assignment of default values to output arguments is not supported.
The next three sections of sample_fcn_output_arguments match those of sample_fcn: check if x is empty, check input combinations, and perform fit logic. Following that, though, the functions diverge heavily, as you might expect. The two checks for total_error and R^2 are not necessary, as those are covered by the output-arguments block. While there is a slight difference, in that the specific status values I assigned in sample_fcn are not possible, I would much prefer to localize all these checks in the arguments block, as is already done for input arguments.
Furthermore, the entire section of eight assertions in sample_fcn is removed, as, again, that would be covered by the output-arguments block.
This function ends with the same status assignment. Again, this is not exactly the same as in sample_fcn, since any failed assertion would prevent that assignment. However, that would also halt execution, so it is a moot point.
function [out] = sample_fcn_output_arguments(in)
arguments(Input)
in.x (:, 1) = []
in.model_type (1, 1) string {mustBeMember(in.model_type, ...
["2-factor", "3-factor", "4-factor"])} = "2-factor"
in.number_of_terms (1, 1) {mustBeMember(in.number_of_terms, 1:5)} = 1
in.normalize_fit (1, 1) logical = false
end
arguments(Output)
out.fit (:, 1) {mustBeSameSize(out.fit, in.x)} = []
out.total_error (1, 1) {mustBeFinite(out.total_error)} = []
out.R_squared (1, 1) {mustBeLessThanOrEqual(out.R_squared, 1)} = NaN
out.status (1, 1) string = "Fit not possible for supplied inputs."
end
%%
if isempty(in.x)
return
end
%%
if ((in.model_type == "2-factor") && (in.number_of_terms == 5)) || ... % other possible logic
out.status = "Specified combination of model_type and number_of_terms is not supported.";
return
end
%%
switch in.model_type
case "2-factor"
out.fit = % code for 2-factor fit
case "3-factor"
out.fit = % code for 3-factor fit
case "4-factor"
out.fit = % code for 4-factor fit
end
%%
out.status = "The fit was successful.";
end
Final Thoughts
There is a significant amount of unrealized potential for the output-arguments block. Hopefully what I have provided is helpful for continued developments in this area.
What are your thoughts? How would you improve arguments blocks for outputs (or inputs)? If you do not already use them, I hope that you start to now.
Should plotting functions, such as plot, semilogx, etc. internally apply squeeze to inputs?
For example, the ubiquitous bode from the Control System Toolbox always returns 3D outputs
w = logspace(-1,3,100);
[m,p] = bode(tf(1,[1 1]),w);
size(m)
ans = 1×3
1 1 100
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
and therefore plotting requires an explicit squeeze (or rehape, or colon)
% semilogx(w,squeeze(db(m)))
Similarly, I'm using page* functions more regularly and am now generating 3D results whereas my old code would generate 2D. For example
x = [1;1];
theta = reshape(0:.1:2*pi,1,1,[]);
Z = [cos(theta), sin(theta);-sin(theta),cos(theta)];
y = pagemtimes(Z,x);
Now, plotting requires squeezing the inputs
% plot(squeeze(theta),squeeze(y))
Would there be any drawbacks to having plot, et. al., automagically apply squeeze to its inputs?
We are thrilled to announce the redesign of the Discussions leaf page, with a new user-focused right-hand column!
Why Are We Doing This?
  • Address Readers’ Needs:
Previously, the right-hand column displayed related content, but feedback from our community indicated that this wasn't meeting your needs. Many of you expressed a desire to read more posts from the same author but found it challenging to locate them.
With the new design, readers can easily learn more about the author, explore their other posts, and follow them to receive notifications on new content.
  • Enhance Authors’ Experience:
Since the launch of the Discussions area earlier this year, we've seen an influx of community members sharing insightful technical articles, use cases, and ideas. The new design aims to help you grow your followers and organize your content more effectively by editing tags. We highly encourage you to use the Discussions area as your community blogging platform.
We hope you enjoy the new design of the right-hand column. Please feel free to share your thoughts and experiences by leaving a comment below.
I would like to propose the creation of MATLAB EduHub, a dedicated channel within the MathWorks community where educators, students, and professionals can share and access a wealth of educational material that utilizes MATLAB. This platform would act as a central repository for articles, teaching notes, and interactive learning modules that integrate MATLAB into the teaching and learning of various scientific fields.
Key Features:
1. Resource Sharing: Users will be able to upload and share their own educational materials, such as articles, tutorials, code snippets, and datasets.
2. Categorization and Search: Materials can be categorized for easy searching by subject area, difficulty level, and MATLAB version..
3. Community Engagement: Features for comments, ratings, and discussions to encourage community interaction.
4. Support for Educators: Special sections for educators to share teaching materials and track engagement.
Benefits:
- Enhanced Educational Experience: The platform will enrich the learning experience through access to quality materials.
- Collaboration and Networking: It will promote collaboration and networking within the MATLAB community.
- Accessibility of Resources: It will make educational materials available to a wider audience.
By establishing MATLAB EduHub, I propose a space where knowledge and experience can be freely shared, enhancing the educational process and the MATLAB community as a whole.
Alexander
Alexander
최근 활동: 2024년 1월 10일

Ich habe das Problem das ich immer nur 1 Tag aufzeichnen kann (siehe Anhang), obwohl ich den Parameter au 15 tage gestellt habe.
The MATLAB AI Chat Playground is now open to the whole community! Answer questions, write first draft MATLAB code, and generate examples of common functions with natural language.
The playground features a chat panel next to a lightweight MATLAB code editor. Use the chat panel to enter natural language prompts to return explanations and code. You can keep chatting with the AI to refine the results or make changes to the output.
MATLAB AI Chat Playground
Give it a try, provide feedback on the output, and check back often as we make improvements to the model and overall experience.
In the past year, we've witnessed an exponential growth of ChatGPT and other Generative AI tools. AI has quickly become a transformative force across industries, from tech giants to small startups, and even community sites like ours. For instance, Stack Overflow announced its plan to leverage AI tools to draft a question or tag content; Quora built a ChatGPT bot to answer questions; and GitHub is piloting the AI tool for personalized content.
This trend in the community landscape makes me wonder what MATLAB Central community, especially in MATLAB Answers, can do to integrate AI and enhance the community.
Share with us your ideas in the comment session. Ideally one comment per idea, so that others can vote on a secific idea or have deeper discussions about it.
im trying to draw a path for the aircraft. so the aircraft needs to avoid all the red zones in the radar image i have and should travel only on green zones even the waypoints are on redzones.
% Load the radar image
radar_image = imread('radar.jpg');
I = radar_image;
% Display the radar image
figure;
imshow(I);
% Select waypoints
disp('Select the waypoints:');
[x, y] = ginput;
waypoints = [x, y];
% Save waypoints
save('waypoints.mat', 'waypoints');
% Load saved waypoints
load('waypoints.mat');
% Plot waypoints and connect them with lines
hold on;
plot(waypoints(:, 1), waypoints(:, 2), 'ro', 'LineWidth', 2);
plot(waypoints(:, 1), waypoints(:, 2), 'r--', 'LineWidth', 1);
% Load aircraft icon image
aircraft_icon = imread('aircraft_icon.png');
% Resize the aircraft icon image
desired_size = 30; % Change this value to adjust the size of the aircraft icon
aircraft_icon_resized = imresize(aircraft_icon, [desired_size, desired_size]);
% Animate aircraft using AI algorithm
tolerance = 5; % Tolerance for reaching waypoints
max_steps = 100; % Maximum steps to reach the destination
step_size = 1; % Step size for potential field calculations
% Plot the initial position of the aircraft
current_pos = waypoints(1, :);
h = image(current_pos(1), current_pos(2), aircraft_icon_resized);
set(h, 'AlphaData', 0.7); % Set the transparency (optional)
for i = 1:size(waypoints, 1)-1
start = waypoints(i, :);
finish = waypoints(i+1, :);
% Perform A* algorithm to find an alternate path through green zones
alternate_path = A_star(start, finish);
for j = 1:size(alternate_path, 1)-1
% Initialize the position of the aircraft
current_pos = alternate_path(j, :);
next_waypoint = alternate_path(j+1, :);
% Continue to the next waypoint if the current position is already near the waypoint
if norm(current_pos - next_waypoint) <= tolerance
continue;
end
% Perform animation to move the aircraft through the potential field
animateAircraft(current_pos, next_waypoint, max_steps, step_size, h);
% Update the radar image I with the current position of the aircraft
I(round(current_pos(2)), round(current_pos(1))) = 0;
end
end
function animateAircraft(current_pos, next_waypoint, max_steps, step_size, h)
% Animate the aircraft to move from current_pos to next_waypoint
for t = 1:max_steps
% Check if the aircraft has reached the destination waypoint
if norm(current_pos - next_waypoint) <= tolerance
break;
end
% Calculate potential field forces
attractive_force = next_waypoint - current_pos;
repulsive_force = zeros(1, 2);
% Calculate the repulsive forces from each red and yellow region
red_regions = find(I == 1);
yellow_regions = find(I == 2);
for k = 1:length(red_regions)
[r, c] = ind2sub(size(I), red_regions(k));
obstacle = [c, r];
repulsive_force = repulsive_force + calculate_repulsive_force(current_pos, obstacle);
end
for k = 1:length(yellow_regions)
[r, c] = ind2sub(size(I), yellow_regions(k));
obstacle = [c, r];
repulsive_force = repulsive_force + calculate_repulsive_force(current_pos, obstacle);
end
% Combine the forces to get the total force
total_force = attractive_force + 0.5 * repulsive_force; % Reduce repulsive force to move through obstacles more easily
% Normalize the total force and move the aircraft
total_force = total_force / norm(total_force);
current_pos = current_pos + step_size * total_force;
% Update the aircraft position on the plot
set(h, 'XData', current_pos(1), 'YData', current_pos(2));
drawnow; % Force the plot to update
% Pause for a short duration to visualize the animation
pause(0.05);
end
end
function force = calculate_repulsive_force(position, obstacle, I)
% Constants for the potential field calculation
repulsive_gain = 1000; % Adjust this value to control the obstacle avoidance strength
min_distance = 5; % Minimum distance to avoid division by zero
% Calculate the distance and direction to the obstacle
distance = norm(position - obstacle);
direction = (position - obstacle) / distance;
% Check if the obstacle is a waypoint
is_waypoint = false;
waypoints = [1, 2; 3, 4; 5, 6]; % Replace this with the actual waypoints' coordinates
for i = 1:size(waypoints, 1)
if isequal(obstacle, waypoints(i, :))
is_waypoint = true;
break;
end
end
% Check the color of the obstacle in the radar image
color = I(round(obstacle(2)), round(obstacle(1)));
% Calculate the repulsive force
if ~is_waypoint && color ~= 0 % Obstacle is not a waypoint or 0
force = repulsive_gain / max(distance, min_distance)^2 * direction;
else
force = zeros(1, 2);
end
end
this the code im using. But according to the output im getting, the aircraft is still travelling through all the red and yellow zones.i have tagged the aircraft_icon.png and rada.jpg images which have been used in the code. can somebody help me out with this?
MATLAB Central has been great community-based MATLAB resources, but you can now access its content programmatically via the public API, and I created a MATLAB function to take advantage of that. You can learn more here https://api.mathworks.com/community
Example:
data = searchMATLABCentral("plotting",scope="matlab-answers",sort_order="created desc",created_after=datetime("2023-01-01"));
T = struct2table(data.items);
T(:,["created_date","title","is_answered"])
Output
Function
function results = searchMATLABCentral(query,options)
% SEARCGMATLABCENTRAL retrieves content of the MATLAB Central for a given
% query and returns the result as a struct.
% The function uses MathWorks RESTful API to search for content.
% The API is rate limited via IP throttling. No authentication is required.
% See API documentation for more details https://api.mathworks.com/community
%
% Input Arguments:
%
% query (string) - Required. The search query string.
% scope (string) - Optional. Specify the artifact. If not specified,
% the scope defaults to 'matlab-answers'.
% Other options include 'file-exchange','blogs','cody',
% 'community-highlights', and 'community-contests'.
% tags (string) - Optional. Specify a comma-separated list of tags.
% created_before (datetime) - Optional. Specify the last date in the results
% created_after (datetime) - Optional. Specify the first date in the results
% sort_order (string) - Optional. Speficy the order of the results.
% If not specified, it defaults to "relevance desc".
% Other options include 'created asc', 'created desc',
% 'updated asc','updated desc', 'relevance asc',
% and 'relevance desc'.
% page (integer) - Optional. Specify the page to retrieve.
% If the 'has_more' field in the result is positive,
% increment this argument to retrieve the next page.
% count (integer) - Optional. Specify the number of results as a value
% between 1 and 50; The default is 10.
%
% Output Arguments:
%
% results (struct) - Structure array containing the results of the search.
% validate input arguments
arguments
query string {mustBeNonzeroLengthText,mustBeTextScalar}
options.scope string {mustBeMember(options.scope,["matlab-answers", ...
"file-exchange","blogs","cody","community-highlights", ...
"community-contests"])} = "matlab-answers";
options.tags string {mustBeNonzeroLengthText,mustBeVector}
options.created_before (1,1) datetime
options.created_after (1,1) datetime
options.sort_order string {mustBeMember(options.sort_order,["created asc", ...
"created desc","updated asc","updated desc","relevance asc","relevance desc"])}
options.page double {mustBeInteger,mustBeGreaterThan(options.page,0)}
options.count double {mustBeInteger,mustBeInRange(options.count,1,50)}
end
% API URL and endpoint
url = "https://api.mathworks.com/community";
endpoint = "/v1/search";
% convert MATLAB datetime to the internet datetime format string
if isfield(options,"created_before")
options.created_before = string(options.created_before,"yyyy-MM-dd'T'HH:mm:ss'Z'");
end
if isfield(options,"created_after")
options.created_after = string(options.created_after,"yyyy-MM-dd'T'HH:mm:ss'Z'");
end
% convert optional inputs into a cell array of key-value pairs
keys = fieldnames(options);
vals = struct2cell(options);
params = [keys,vals].';
% call the API
try
results = webread(url+endpoint,"query",query,params{:});
catch ME
rethrow(ME)
end
end
This is the 6th installment of the wish-list and bug report thread.
This topic is the follow on to the first Wish-list for MATLAB Answer sections and second MATLAB Answers Wish-list #2 (and bug reports). The third started out as New design of the forum - grey on white and the fourth and fifth also grew so large they are slow to load and navigate.
Same idea as the previous ones: one wish (or bug report) per answer, so that people can vote their wishes.
What should you post where?
Wishlist threads (#1 #2 #3 #4 #5 #6): bugs and feature requests for Matlab Answers
Frustation threads (#1 #2): frustations about usage and capabilities of Matlab itself
Missing feature threads (#1 #2): features that you whish Matlab would have had
Next Gen threads (#1): features that would break compatibility with previous versions, but would be nice to have
@anyone posting a new thread when the last one gets too large (about 50 answers seems a reasonable limit per thread), please update this list in all last threads. (if you don't have editing privileges, just post a comment asking someone to do the edit)
Tom BS
Tom BS
최근 활동: 2022년 11월 15일

Hello,
Can someone please give me a hint how the settings at Tasmoto have to be made in order to send data via MQTT to ThingSpeak.
Halil Kemal has an open channel tag: tasmota where this seems to work.
Thank you in advance for your support.
TOM
We operate roughly 600 data loggers on Think Speak where there are roughly 150 gateways and each gateway communicates with a node. Our channels are labeled node# - gateway number and each number is 16 diigits. We have not found a wildcard search function so must have each number exactly right or we cannot find our channel. In some cases we wish to query a gateway and see which nodes are successfully communicating with it.

I have a Thingtweet: "Measurements %%datetime%% Comment" The tweet will send the time as say: 5:23pm I want it in 24hr format = 17:23 I have scoured the site and I cant find any way of doing this in a tweet. Also that would be local time, is it possible to use UTC ?



20 minutes makes a difference

I struggled to learn MATLAB at first. A colleague at my university gave me about 20 minutes of his time to show me some basic features, how to reference the documentation, and how to debug code. That was enough for me to start using MATLAB independently. After a few semesters of developing analyses and visualizations, I started answering questions in the forum when I had time. I became addicted to volunteering and learning from the breadth of analytical problems the forum exposed me to.



Have you ever solved a problem using a MathWorks product?

If your answer is YES, you may be the right person to help someone looking for guidance to solve a similar problem. Some answers in the MATLAB Central community forum maintain 1000s of views per month and some files on the File Exchange have 1000s of downloads. Volunteering a moment of your time to answer a question or to share content to the File Exchange may benefit countless individuals in the near and distant future and you will likely learn a lot by contributing too!

  • 3616 questions were asked last month in the forum and in that time, 747 volunteers answered at least one question!
  • 62% of those volunteers were first-time contributors!
  • 335 volunteer contributors shared content in the File Exchange last month!
  • 1: the number of contributions it takes to make a difference.

This week is National Volunteer Week in the USA (April 17-23). Challenge yourself and your colleagues by committing to help a stranger break barriers in their path to learning MATLAB.



How to volunteer and contribute to the MATLAB Central Community

Here are two easy ways to accept the volunteer challenge.

Contribute to the MATLAB Answers Forum

  1. Go to the MATLAB Answers repository. This page shows all unanswered questions starting with the most recent question. Use the filters on the left to see answered questions or questions belonging to a specific category. Alternatively, search for questions using keywords in the search field or visit the landing page.
  2. Open a few questions that interest you based on the question titles and tags.
  3. Decide how you'd like to contribute. Sometimes a question needs refinement or requires a bit of work to address. Decide whether to leave a comment that guides the user in the right direction, answer the question, or skip to the next question. The decision tree below is how some experienced contributors approach these decisions.

Pro tips

  • Newer questions have more traffic and are often answered within an hour or minutes.
  • Multiple answers often add valuable alternative perspectives and solutions.
  • Sometimes answers aren't accepted or the asker disappears. Be not discouraged. Your answer holds much value.



Contribute to the File Exchange

  1. Choose a function, script, demo, or toolbox you created that may be helpful to the community.
  2. Go to the MathWorks File Exchange. Search for submissions that are similar to your idea and decide whether your idea adds value.
  3. Prepare your code for open-source sharing. The best submissions include brief documentation that explains the purpose of the code, inputs, expected outputs and limitations.
  4. Use the "Publish your code" button from the link above. This will guide you through the submission process.



Make a difference

No matter what level you are at as a MATLAB developer, you have skills that others around you could benefit from learning. Take the challenge and become a giant.

Let us know about your experience with MATLAB Central volunteers or your experience becoming a MATLAB Central volunteer in the comments below!

Bonjour, J'utilise arduino Mega 2560 avec le shield Ethernet. Le sketch ino joint ci-après me permet de visualiser la jauge dans la page index.htm chargée sur la carte SD. ThingSpeak affiche bien le graph correspondant. Mais ma page web n'y a pas accès. Comment intégrer les codes dans la page ou dans le sketch pour cela ? Je vous joins la capture d'écran de cette page ainsi que les codes De la page et du sketch. Merci pour votre aide.

*********************************** Code Page "index.htm" ***********************************

<!DOCTYPE html>
<html>
    <head>
        <title>Arduino Internet Voltmeter</title>
        <script>
		var data_val = 0;		// raw data from Arduino analog input (0 to 1023)
		var volts = 0;			// voltage calculated from Arduino analog raw data value
		var num_updates = 0;	// number of 200ms periods used to calculate time to send data to ThingSpeak
		// gauge code
		eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--)r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];e=function(){return'\\w+'};c=1};while(c--)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p}('t W=v(f){W.2t.3T(A);A.B={Z:2u,19:1q,1h:1q,1J:U,1b:D,K:0,V:[\'0\',\'20\',\'40\',\'2A\',\'2B\',\'D\'],2r:10,2C:M,1E:U,2q:{2D:3,2E:2},2H:M,1c:{2j:10,2m:3y,2O:\'3v\'},J:{2P:\'#4h\',V:\'#31\',2r:\'#3k\',1J:\'#37\',1E:\'#37\',3e:\'#31\',1t:{2s:\'1e(3Y, 3d, 3d, 1)\',3c:\'1e(1Y, 5I, 5E, .9)\'}},1o:[{1n:20,1D:2A,1F:\'#3j\'},{1n:2A,1D:2B,1F:\'#36\'},{1n:2B,1D:D,1F:\'#5n\'}]};t g=0,1p=A,N=0,1S=0,1G=U;A.5d=v(a){N=f.1c?g:a;t b=(f.1b-f.K)/D;1S=a>f.1b?1S=f.1b+b:a<f.K?f.K-b:a;g=a;f.1c?3l():A.1g();C A};A.3m=v(a){N=g=a;A.1g();C A};A.4T=v(){g=N=1S=A.B.K;A.1g();C A};A.4R=v(){C g};A.13=v(){};v 2k(a,b){Q(t i 4P b){z(1H b[i]=="1W"&&!(4O.4y.2V.4p(b[i])===\'[1W 4n]\')&&i!=\'Z\'){z(1H a[i]!="1W"){a[i]={}}2k(a[i],b[i])}O{a[i]=b[i]}}};2k(A.B,f);A.B.K=1R(A.B.K);A.B.1b=1R(A.B.1b);f=A.B;N=g=f.K;z(!f.Z){4m 4j("4g 4d 4b 46 44 41 3Z 3W W 1W!");}t j=f.Z.5K?f.Z:2R.5v(f.Z),q=j.3u(\'2d\'),1i,1y,1A,14,17,u,1d;v 2M(){j.19=f.19;j.1h=f.1h;1i=j.4s(M);1d=1i.3u(\'2d\');1y=j.19;1A=j.1h;14=1y/2;17=1A/2;u=14<17?14:17;1i.2J=U;1d.3P(14,17);1d.G();q.3P(14,17);q.G()};2M();A.4Z=v(a){2k(A.B,a);2M();A.1g();C A};t k={4q:v(p){C p},4e:v(p){C E.1L(p,2)},4c:v(p){C E.1L(p,5)},3v:v(p){C 1-E.1O(E.5C(p))},5k:v(p){C 1-(v(p){Q(t a=0,b=1;1;a+=b,b/=2){z(p>=(7-4*a)/11){C-E.1L((11-6*a-11*p)/4,2)+E.1L(b,2)}}})(1-p)},4S:v(p){C 1-(v(p){t x=1.5;C E.1L(2,10*(p-1))*E.1T(20*E.1a*x/3*p)})(1-p)}};t l=2u;v 3S(d){t e=2v 3R;l=2x(v(){t a=2v 3R-e,1M=a/d.2m;z(1M>1){1M=1}t b=1H d.2g=="v"?d.2g:k[d.2g];t c=b(1M);d.3Q(c);z(1M==1){2b(l)}},d.2j||10)};v 3l(){l&&2b(l);t b=(1S-N),1n=N,29=f.1c;3S({2j:29.2j,2m:29.2m,2g:29.2O,3Q:v(a){N=1R(1n)+b*a;1p.1g()}})};q.5l="3O";A.1g=v(){z(!1i.2J){1d.3M(-14,-17,1y,1A);1d.G();t a=q;q=1d;3L();3K();3I();3H();3F();3D();3z();1i.2J=M;q=a;5G a}q.3M(-14,-17,1y,1A);q.G();q.4a(1i,-14,-17,1y,1A);z(!W.28){t b=2x(v(){z(!W.28){C}2b(b);2K();2L();z(!1G){1p.13&&1p.13();1G=M}},10)}O{2K();2L();z(!1G){1p.13&&1p.13();1G=M}}C A};v S(a){C a*E.1a/4J};v 1l(a,b,c){t d=q.4Y(0,0,0,c);d.1V(0,a);d.1V(1,b);C d};v 3L(){t a=u/D*5g,3x=u-a,2a=u/D*5q,5u=u-2a,1f=u/D*5z,5A=u-1f;3t=u/D*5F;q.G();z(f.2H){q.2o=3x;q.2n=\'1e(0, 0, 0, 0.5)\'}q.P();q.16(0,0,a,0,E.1a*2,M);q.L=1l(\'#42\',\'#43\',a);q.T();q.R();q.P();q.16(0,0,2a,0,E.1a*2,M);q.L=1l(\'#49\',\'#36\',2a);q.T();q.P();q.16(0,0,1f,0,E.1a*2,M);q.L=1l(\'#3j\',\'#3s\',1f);q.T();q.P();q.16(0,0,3t,0,E.1a*2,M);q.L=f.J.2P;q.T();q.G()};v 3H(){t r=u/D*2T;q.2e=2;q.2U=f.J.V;q.G();Q(t i=0;i<f.V.H;++i){t a=45+i*(1U/(f.V.H-1));q.1z(S(a));q.P();q.1K(0,r);q.F(0,r-u/D*15);q.1X();q.R();q.G()}z(f.2C){q.1z(S(2X));q.P();q.16(0,0,r,S(45),S(4N),U);q.1X();q.R();q.G()}};v 3I(){t r=u/D*2T;q.2e=1;q.2U=f.J.2r;q.G();t b=f.2r*(f.V.H-1);Q(t i=0;i<b;++i){t a=45+i*(1U/b);q.1z(S(a));q.P();q.1K(0,r);q.F(0,r-u/D*7.5);q.1X();q.R();q.G()}};v 3F(){t r=u/D*55;Q(t i=0;i<f.V.H;++i){t a=45+i*(1U/(f.V.H-1)),p=1w(r,S(a));q.1x=20*(u/1q)+"2i 2Y";q.L=f.J.3e;q.2e=0;q.2h="2f";q.27(f.V[i],p.x,p.y+3)}};v 3D(){z(!f.1J){C}q.G();q.1x=24*(u/1q)+"2i 2Y";q.L=f.J.1J;q.2h="2f";q.27(f.1J,0,-u/4.25);q.R()};v 3z(){z(!f.1E){C}q.G();q.1x=22*(u/1q)+"2i 2Y";q.L=f.J.1E;q.2h="2f";q.27(f.1E,0,u/3.25);q.R()};v 32(a){t b=f.2q.2E,34=f.2q.2D;a=1R(a);t n=(a<0);a=E.35(a);z(b>0){a=a.5t(b).2V().1j(\'.\');Q(t i=0,s=34-a[0].H;i<s;++i){a[0]=\'0\'+a[0]}a=(n?\'-\':\'\')+a[0]+\'.\'+a[1]}O{a=E.3O(a).2V();Q(t i=0,s=34-a.H;i<s;++i){a=\'0\'+a}a=(n?\'-\':\'\')+a}C a};v 1w(r,a){t x=0,y=r,1O=E.1O(a),1T=E.1T(a),X=x*1T-y*1O,Y=x*1O+y*1T;C{x:X,y:Y}};v 3K(){q.G();t a=u/D*2T;t b=a-u/D*15;Q(t i=0,s=f.1o.H;i<s;i++){t c=f.1o[i],39=(f.1b-f.K)/1U,1P=S(45+(c.1n-f.K)/39),1N=S(45+(c.1D-f.K)/39);q.P();q.1z(S(2X));q.16(0,0,a,1P,1N,U);q.R();q.G();t d=1w(b,1P),3a=1w(a,1P);q.1K(d.x,d.y);q.F(3a.x,3a.y);t e=1w(a,1N),3b=1w(b,1N);q.F(e.x,e.y);q.F(3b.x,3b.y);q.F(d.x,d.y);q.1C();q.L=c.1F;q.T();q.P();q.1z(S(2X));q.16(0,0,b,1P-0.2,1N+0.2,U);q.R();q.1C();q.L=f.J.2P;q.T();q.G()}};v 2L(){t a=u/D*12,1f=u/D*8,1u=u/D*3X,1r=u/D*20,2l=u/D*4,1B=u/D*2,38=v(){q.3f=2;q.3g=2;q.2o=10;q.2n=\'1e(5L, 3h, 3h, 0.45)\'};38();q.G();z(N<0){N=E.35(f.K-N)}O z(f.K>0){N-=f.K}O{N=E.35(f.K)+N}q.1z(S(45+N/((f.1b-f.K)/1U)));q.P();q.1K(-1B,-1r);q.F(-2l,0);q.F(-1,1u);q.F(1,1u);q.F(2l,0);q.F(1B,-1r);q.1C();q.L=1l(f.J.1t.2s,f.J.1t.3c,1u-1r);q.T();q.P();q.F(-0.5,1u);q.F(-1,1u);q.F(-2l,0);q.F(-1B,-1r);q.F(1B/2-2,-1r);q.1C();q.L=\'1e(1Y, 1Y, 1Y, 0.2)\';q.T();q.R();38();q.P();q.16(0,0,a,0,E.1a*2,M);q.L=1l(\'#3s\',\'#36\',a);q.T();q.R();q.P();q.16(0,0,1f,0,E.1a*2,M);q.L=1l("#47","#48",1f);q.T()};v 3i(x,y,w,h,r){q.P();q.1K(x+r,y);q.F(x+w-r,y);q.23(x+w,y,x+w,y+r);q.F(x+w,y+h-r);q.23(x+w,y+h,x+w-r,y+h);q.F(x+r,y+h);q.23(x,y+h,x,y+h-r);q.F(x,y+r);q.23(x,y,x+r,y);q.1C()};v 2K(){q.G();q.1x=40*(u/1q)+"2i 30";t a=32(g),2Z=q.4f(\'-\'+32(0)).19,y=u-u/D*33,x=0,2W=0.12*u;q.G();3i(-2Z/2-0.21*u,y-2W-0.4i*u,2Z+0.3n*u,2W+0.4k*u,0.21*u);t b=q.4l(x,y-0.12*u-0.21*u+(0.12*u+0.3o*u)/2,u/10,x,y-0.12*u-0.21*u+(0.12*u+0.3o*u)/2,u/5);b.1V(0,"#37");b.1V(1,"#3k");q.2U=b;q.2e=0.3n*u;q.1X();q.2o=0.3p*u;q.2n=\'1e(0, 0, 0, 1)\';q.L="#4o";q.T();q.R();q.3f=0.3q*u;q.3g=0.3q*u;q.2o=0.3p*u;q.2n=\'1e(0, 0, 0, 0.3)\';q.L="#31";q.2h="2f";q.27(a,-x,y);q.R()}};W.28=U;(v(){t d=2R,h=d.3r(\'4r\')[0],2S=4t.4u.4v().4w(\'4x\')!=-1,2Q=\'4z://4A-4B.4C/4D/4E/4F-7-4G.\'+(2S?\'4H\':\'4I\'),1I="@1x-4K {"+"1x-4L: \'30\';"+"4M: 2Q(\'"+2Q+"\');"+"}",1s,r=d.3w(\'1v\');r.2N=\'1I/4Q\';z(2S){h.2p(r);1s=r.2I;1s.3A=1I}O{4U{r.2p(d.4V(1I))}4W(e){r.3A=1I}h.2p(r);1s=r.2I?r.2I:(r.4X||d.3B[d.3B.H-1])}t b=2x(v(){z(!d.3C){C}2b(b);t a=d.3w(\'50\');a.1v.51=\'30\';a.1v.52=\'53\';a.1v.1h=a.1v.19=0;a.1v.54=\'56\';a.57=\'.\';d.3C.2p(a);58(v(){W.28=M;a.59.5a(a)},3y)},1)})();W.2t=[];W.2t.5b=v(a){z(1H(a)==\'5c\'){Q(t i=0,s=A.H;i<s;i++){z(A[i].B.Z.18(\'5e\')==a){C A[i]}}}O z(1H(a)==\'5f\'){C A[a]}O{C 2u}};v 3E(a){z(2G.3G){2G.3G(\'5h\',a,U)}O{2G.5i(\'5j\',a)}}3E(v(){v 2F(a){t b=a[0];Q(t i=1,s=a.H;i<s;i++){b+=a[i].1Z(0,1).5m()+a[i].1Z(1,a[i].H-1)}C b};v 3J(a){C a.5o(/^\\s+|\\s+$/g,\'\')};t c=2R.3r(\'5p\');Q(t i=0,s=c.H;i<s;i++){z(c[i].18(\'1k-2N\')==\'5r-5s\'){t d=c[i],B={},1m,w=2c(d.18(\'19\')),h=2c(d.18(\'1h\'));B.Z=d;z(w){B.19=w}z(h){B.1h=h}Q(t e=0,1s=d.3N.H;e<1s;e++){1m=d.3N.5w(e).5x;z(1m!=\'1k-2N\'&&1m.1Z(0,5)==\'1k-\'){t f=1m.1Z(5,1m.H-5).5y().1j(\'-\'),I=d.18(1m);z(!I){2z}5B(f[0]){2y\'J\':{z(f[1]){z(!B.J){B.J={}}z(f[1]==\'1t\'){t k=I.1j(/\\s+/);z(k[0]&&k[1]){B.J.1t={2s:k[0],3c:k[1]}}O{B.J.1t=I}}O{f.5D();B.J[2F(f)]=I}}26}2y\'1o\':{z(!B.1o){B.1o=[]}2w=I.1j(\',\');Q(t j=0,l=2w.H;j<l;j++){t m=3J(2w[j]).1j(/\\s+/),1Q={};z(m[0]&&m[0]!=\'\'){1Q.1n=m[0]}z(m[1]&&m[1]!=\'\'){1Q.1D=m[1]}z(m[2]&&m[2]!=\'\'){1Q.1F=m[2]}B.1o.3T(1Q)}26}2y\'1c\':{z(f[1]){z(!B.1c){B.1c={}}z(f[1]==\'2O\'&&/^\\s*v\\s*\\(/.5H(I)){I=3U(\'(\'+I+\')\')}B.1c[f[1]]=I}26}5J:{t n=2F(f);z(n==\'13\'){2z}z(n==\'V\'){I=I.1j(/\\s+/)}O z(n==\'2C\'||n==\'2H\'){I=I==\'M\'?M:U}O z(n==\'2q\'){t o=I.1j(\'.\');z(o.H==2){I={2D:2c(o[0]),2E:2c(o[1])}}O{2z}}B[n]=I;26}}}}t g=2v W(B);z(d.18(\'1k-3V\')){g.3m(1R(d.18(\'1k-3V\')))}z(d.18(\'1k-13\')){g.13=v(){3U(A.B.Z.18(\'1k-13\'))}}g.1g()}}});',62,358,'||||||||||||||||||||||||||ctx|||var|max|function||||if|this|config|return|100|Math|lineTo|save|length|attrValue|colors|minValue|fillStyle|true|fromValue|else|beginPath|for|restore|radians|fill|false|majorTicks|Gauge|||renderTo||||onready|CX||arc|CY|getAttribute|width|PI|maxValue|animation|cctx|rgba|r2|draw|height|cache|split|data|lgrad|prop|from|highlights|self|200|rOut|ss|needle|rIn|style|rpoint|font|CW|rotate|CH|pad2|closePath|to|units|color|imready|typeof|text|title|moveTo|pow|progress|ea|sin|sa|hlCfg|parseFloat|toValue|cos|270|addColorStop|object|stroke|255|substr||025||quadraticCurveTo|||break|fillText|initialized|cfg|r1|clearInterval|parseInt||lineWidth|center|delta|textAlign|px|delay|applyRecursive|pad1|duration|shadowColor|shadowBlur|appendChild|valueFormat|minorTicks|start|Collection|null|new|hls|setInterval|case|continue|60|80|strokeTicks|int|dec|toCamelCase|window|glow|styleSheet|i8d|drawValueBox|drawNeedle|baseInit|type|fn|plate|url|document|ie|81|strokeStyle|toString|th|90|Arial|tw|Led|444|padValue||cint|abs|ccc|888|shad|vd|pe|pe1|end|128|numbers|shadowOffsetX|shadowOffsetY|143|roundRect|eee|666|animate|setRawValue|05|045|012|004|getElementsByTagName|f0f0f0|r3|getContext|cycle|createElement|d0|250|drawUnits|cssText|styleSheets|body|drawTitle|domReady|drawNumbers|addEventListener|drawMajorTicks|drawMinorTicks|trim|drawHighlights|drawPlate|clearRect|attributes|round|translate|step|Date|_animate|push|eval|value|the|77|240|creating||when|ddd|aaa|specified||not|e8e8e8|f5f5f5|fafafa|drawImage|was|quint|element|quad|measureText|Canvas|fff|04|Error|07|createRadialGradient|throw|Array|babab2|call|linear|head|cloneNode|navigator|userAgent|toLocaleLowerCase|indexOf|msie|prototype|http|smart|ip|net|styles|fonts|digital|mono|eot|ttf|180|face|family|src|315|Object|in|css|getValue|elastic|clear|try|createTextNode|catch|sheet|createLinearGradient|updateConfig|div|fontFamily|position|absolute|overflow||hidden|innerHTML|setTimeout|parentNode|removeChild|get|string|setValue|id|number|93|DOMContentLoaded|attachEvent|onload|bounce|lineCap|toUpperCase|999|replace|canvas|91|canv|gauge|toFixed|d1|getElementById|item|nodeName|toLowerCase|88|d2|switch|acos|shift|122|85|delete|test|160|default|tagName|188'.split('|'),0,{}))
		// function called periodically to get analog value from Arduino using Ajax
		function GetArduinoInputs()
		{
			nocache = "&nocache=" + Math.random() * 1000000;
			var request = new XMLHttpRequest();
			request.onreadystatechange = function()
			{
				if (this.readyState == 4) {
					if (this.status == 200) {
						if (this.responseXML != null) {
							document.getElementById("input3").innerHTML =
								this.responseXML.getElementsByTagName('analog')[0].childNodes[0].nodeValue;
								data_val = this.responseXML.getElementsByTagName('analog')[0].childNodes[0].nodeValue;
								// calculate voltage
								volts = data_val * 3.5 / 1023;
								// only send data to ThingSpeak every 20 seconds or 100 x 200ms
								if (num_updates >= 100) {
									num_updates = 0;
									// send voltage to ThingSpeak
								ThingSpeakSend("xxxxxxxxxxxxxxxx", volts);	// insert your ThingSpeak Write API Key here
								
								}
								num_updates++;
						}
					}
				}
			}
			request.open("GET", "ajax_inputs" + nocache, true);
			request.send(null);
			setTimeout('GetArduinoInputs()', 200);	// send the request for Arduino analog data every 200ms
			
		}
		// function to send data to ThingSpeak
		function ThingSpeakSend(api_write_key, voltage)
		{
			var ts_req = new XMLHttpRequest();
			// GET request string - modify if more fields are needed
			var req_str = "http://api.thingspeak.com/update?key=" + api_write_key + "&field1=" + voltage;
			ts_req.onreadystatechange = function()
			{
				// not doing anything with response from ThingSpeak
			}
			// send the data to ThingSpeak
			ts_req.open("GET", req_str, true);
			ts_req.send(null);
		}
	</script>
    </head>
    <body onload="GetArduinoInputs()">
        <h1>Arduino Internet Voltmeter</h1>
        <p>Analog (A2): <span id="input3">...</span></p>
        <canvas id="an_gauge_1" data-major-ticks="0 0.5 1 1.5 2 2.5 3 3.5" data-type="canv-gauge" data-min-value="0" data-max-value="3.5" data-onready="setInterval( function() { Gauge.Collection.get('an_gauge_1').setValue(volts);}, 200);"></canvas>
        <!-- insert ThingSpeak chart code here -->
          <iframe width="450" height="260" style="border: 1px solid #cccccc;" src="https://thingspeak.com/channels/1620920/charts/1?bgcolor=%23ffffff&color=%23d62020&dynamic=true&results=60&type=line&update=20&yaxismax=4&yaxismin=0"></iframe>
  <!-- REPLACE THIS COMMENT WITH YOUR THINGSPEAK GRAPH -->
      </body>
  </html>

********************************************* Code "eth_websrv_SD_Ajax_gauge.ino" : *********************************************

#include <Ethernet.h>
#include <SD.h>
#include <ThingSpeak.h>
// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ   50
// MAC address from Ethernet shield sticker under board
byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x1A, 0x71 };
IPAddress ip(192, 168, 1, 17); // IP address, may need to change depending on network
EthernetServer server(80);  // create a server at port 80
File webFile;               // the web page file on the SD card
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null terminated string
char req_index = 0;              // index into HTTP_req buffer
void setup()
{
  // disable Ethernet chip
  pinMode(10, OUTPUT);
  digitalWrite(10, HIGH);
    Serial.begin(9600);       // for debugging
    // initialize SD card
    Serial.println("Initializing SD card...");
    if (!SD.begin(4)) {
        Serial.println("ERROR - SD card initialization failed!");
        return;    // init failed
    }
    Serial.println("SUCCESS - SD card initialized.");
    // check for index.htm file
    if (!SD.exists("index.htm")) {
        Serial.println("ERROR - Can't find index.htm file!");
        return;  // can't find index file
    }
    Serial.println("SUCCESS - Found index.htm file.");
    Ethernet.begin(mac, ip);  // initialize Ethernet device
    server.begin();           // start to listen for clients
    Serial.print ("*\n -> Le serveur est sur l'adresse : ");
    Serial.println(Ethernet.localIP());
}
void loop()
{
    EthernetClient client = server.available();  // try to get client
    if (client)   // got client?
        {
          boolean currentLineIsBlank = true;
        while (client.connected()) 
        {
            if (client.available())    // client data available to read
                {
                char c = client.read(); // read 1 byte (character) from client
                // buffer first part of HTTP request in HTTP_req array (string)
                // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
                if (req_index < (REQ_BUF_SZ - 1)) {
                    HTTP_req[req_index] = c;          // save HTTP request character
                    req_index++;
                }
                // last line of client request is blank and ends with \n
                // respond to client only after last line received
                if (c == '\n' && currentLineIsBlank) {
                    // send a standard http response header
                    client.println("HTTP/1.1 200 OK");
                    // remainder of header follows below, depending on if
                    // web page or XML page is requested
                    // Ajax request - send XML file
                    if (StrContains(HTTP_req, "ajax_inputs")) {
                        // send rest of HTTP header
                        client.println("Content-Type: text/xml");
                        client.println("Connection: keep-alive");
                        client.println();
                    // send XML file containing input states
                    XML_response(client);
                    }
                    else {  // web page request
                        // send rest of HTTP header
                        client.println("Content-Type: text/html");
                        client.println("Connection: keep-alive");
                        client.println();
                        // send web page
                        webFile = SD.open("index.htm");        // open web page file
                        if (webFile) {
                            while(webFile.available()) {
                                client.write(webFile.read()); // send web page to client
                            }
                            webFile.close();
                        }
                    }
                    // display received HTTP request on serial port
                    Serial.print(HTTP_req);
                    // reset buffer index and all buffer elements to 0
                    req_index = 0;
                    StrClear(HTTP_req, REQ_BUF_SZ);
                    break;
                }
                // every line of text received from the client ends with \r\n
                if (c == '\n') {
                    // last character on line of received text
                    // starting new line with next character read
                    currentLineIsBlank = true;
                } 
                else if (c != '\r') {
                    // a text character was received from client
                    currentLineIsBlank = false;
                }
            } // end if (client.available())
        } // end while (client.connected())
        delay(1);      // give the web browser time to receive the data
        client.stop(); // close the connection
    } // end if (client)
}
// send the XML file containing analog value
void XML_response(EthernetClient cl)
{
    int analog_val;
      cl.print("<?xml version = \"1.0\" ?>");
      cl.print("<inputs>");
      // read analog pin A2
      analog_val = analogRead(2);
      cl.print("<analog>");
      cl.print(analog_val);
      cl.print("</analog>");
      cl.print("</inputs>");
  }
// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
    for (int i = 0; i < length; i++) {
        str[i] = 0;
    }
}
// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
    char found = 0;
    char index = 0;
    char len;
    len = strlen(str);
    if (strlen(sfind) > len) {
        return 0;
    }
    while (index < len) {
        if (str[index] == sfind[found]) {
            found++;
            if (strlen(sfind) == found) {
                return 1;
            }
        }
        else {
            found = 0;
        }
        index++;
    }
      return 0;
  }

Categorical navigation is now available in MATLAB Answers.

  • Categories empower you to find, watch, and answer questions by topic and product, rather than product alone.
  • Individual answers have been categorized using an AI model written by MathWorks developers. Read more about our method here.

FAQ

1. What if I've bookmarked or subscribed to a product?

The links will continue to work but use a different filter mechanism.  We encourage you to try the new category filter, to find more questions in your topic of interest.

2. Can I still select a product on the question?

Yes - and product and tags are factored into the text analytics algorithm.  Correcting those fields should improve the nightly categorization. 

Categories are also shown in the Help Center.

Check out your favorite topic of interest and let us know how we're doing in the comments below!

Hi, i wonder if any one experiencing the same, but in my thing sepak profiel i can only see : 1- User API Key 2- Alert API Key

but no MQTT API key? not sure why Thank you

Hallo,

bei THINKSPEAK werden auf dem Handy max 60 Werte angezeigt.

Bei 1 Wert pro Stunde sieht man also 2,5 Tage.

Ich würde lieber 1 Wert pro Tag senden und damit 60 Tage im Überblick haben.

Gibt es dafür eine Lösung ?

Danke & MfG 

Peter Benger 

Adam Danz
Adam Danz
최근 활동: 2023년 10월 17일

Starting in MATLAB R2021a, name-value arguments have a new optional syntax!

A property name can be paired with its value by an equal sign and the property name is not enclosed in quotes.

Compare the comma-separated name,value syntax to the new equal-sign syntax, either of which can be used in >=r2021a:

  • plot(x, y, "b-", "LineWidth", 2)
  • plot(x, y, "b-", LineWidth=2)

It comes with some limitations:

  1. It's recommended to use only one syntax in a function call but if you're feeling rebellious and want to mix the syntaxes, all of the name=value arguments must appear after the comma-separated name,value arguments.
  2. Like the comma-separated name,value arguments, the name=value arguments must appear after positional arguments.
  3. Name=value pairs must be used directly in function calls and cannot be wrapped in cell arrays or additional parentheses.

Some other notes:

  1. The property names are not case-sensitive so color='r' and Color='r' are both supported.
  2. Partial name matches are also supported. plot(1:5, LineW=4)

The new syntax is helpful in distinguishing property names from property values in long lists of name-value arguments within the same line.

For example, compare the following 2 lines:

h = uicontrol(hfig, "Style", "checkbox", "String", "Long", "Units", "Normalize", "Tag", "chkBox1")
h = uicontrol(hfig,  Style="checkbox",    String="Long",    Units="Normalize",    Tag="chkBox1")

Here's another side-by-side comparison of the two syntaxes. See the attached mlx file for the full code and all content of this Community Highlight.

We've all been there. You've got some kind of output that displays perfectly in the command window and you just want to capture that display as a string so you can use it again somewhere else. Maybe it's a multidimensional array, a table, a structure, or a fit object that perfectly displays the information you need in a neat and tidy format but when you try to recreate the display in a string variable it's like reconstructing the Taj Mahal out of legos.

Enter Matlab r2021a > formattedDisplayText()

Use str=formattedDisplayText(var) the same way you use disp(var) except instead of displaying the output, it's stored as a string as it would appear in the command window.

Additional name-value pairs allow you to

  • Specify a numeric format
  • Specify loose|compact line spacing
  • Display true|false instead of 1|0 for logical values
  • Include or suppress markup formatting that may appear in the display such as the bold headers in tables.

Demo: Record the input table and results of a polynomial curve fit

load census
[fitobj, gof] = fit(cdate, pop, 'poly3', 'normalize', 'on')

Results printed to the command window:

fitobj = 
     Linear model Poly3:
     fitobj(x) = p1*x^3 + p2*x^2 + p3*x + p4
       where x is normalized by mean 1890 and std 62.05
     Coefficients (with 95% confidence bounds):
       p1 =       0.921  (-0.9743, 2.816)
       p2 =       25.18  (23.57, 26.79)
       p3 =       73.86  (70.33, 77.39)
       p4 =       61.74  (59.69, 63.8)
gof = 
  struct with fields:
             sse: 149.77
         rsquare: 0.99879
             dfe: 17
      adjrsquare: 0.99857
            rmse: 2.9682

Capture the input table, the printed fit object, and goodness-of-fit structure as strings:

rawDataStr = formattedDisplayText(table(cdate,pop),'SuppressMarkup',true)
fitStr = formattedDisplayText(fitobj)
gofStr = formattedDisplayText(gof)

Display the strings:

rawDataStr = 
    "    cdate     pop 
         _____    _____
         1790       3.9
         1800       5.3
         1810       7.2
         1820       9.6
         1830      12.9
         1840      17.1
         1850      23.1
         1860      31.4
         1870      38.6
         1880      50.2
         1890      62.9
         1900        76
         1910        92
         1920     105.7
         1930     122.8
         1940     131.7
         1950     150.7
         1960       179
         1970       205
         1980     226.5
         1990     248.7
     "
fitStr = 
    "     Linear model Poly3:
          ary(x) = p1*x^3 + p2*x^2 + p3*x + p4
            where x is normalized by mean 1890 and std 62.05
          Coefficients (with 95% confidence bounds):
            p1 =       0.921  (-0.9743, 2.816)
            p2 =       25.18  (23.57, 26.79)
            p3 =       73.86  (70.33, 77.39)
            p4 =       61.74  (59.69, 63.8)
     "
gofStr = 
    "           sse: 149.77
            rsquare: 0.99879
                dfe: 17
         adjrsquare: 0.99857
               rmse: 2.9682
     "

Combine the strings into a single string and write it to a text file in your temp directory:

txt =  strjoin([rawDataStr; fitStr; gofStr],[newline newline]);
file = fullfile(tempdir,'results.txt');
fid = fopen(file,'w+');
cleanup = onCleanup(@()fclose(fid)); 
fprintf(fid, '%s', txt);
clear cleanup

Open results.txt.

winopen(file) % for Windows platforms