Finite potential well transcendental graph

조회 수: 4 (최근 30일)
Salman Azam
Salman Azam 2020년 10월 12일
댓글: Taharat 2022년 12월 4일
Hello,
I am trying to find the energies solution to the transcendental equation by plotting both graphs and finding their points of intersection. I don't why but my graphs are very weirdly shaped and don't follow the expected solution that is shown in textbooks. The tan graph itself is coming out to be a weird shape.
My train of though was to just vary E, plug that numbers in the equations and then plot the solutions against E (in eV).
The code is pasted below:
%%%%%%%%%%%%%%%%%%%%%
clear all;
e=1.6*10^-19; % eV to Joules
V=20*e;
L=6e-10;
m=9.11e-31;
h=(6.63e-34)/(2*pi);
a=(sqrt(2*m)*L)/(2*h);
E=[0:0.0001*e:V];
for i=1:length(E)
y1(i)=sqrt(E(i))*tan(a*E(i)^0.5);
y2(i)=(V-E(i))^0.5;
end
%Back to eV
E=E/e;
y3=y1/e;
y4=y2/e;
plot(E,y4)
xlim([0 20]); grid on;
%%%%%%%%%%%%%%%%%%%%%
Any help will be greatly appreciated.
  댓글 수: 3
Taharat
Taharat 2022년 12월 4일
Hi,
Could you please let me know what would happen if an static electric field of 10V/um is applied on to this well?
How the energies are to be calculated?
Thanks

댓글을 달려면 로그인하십시오.

답변 (1개)

Ashish Kumar
Ashish Kumar 2022년 2월 10일
편집: Ashish Kumar 2022년 2월 12일
clear all;
e=1.6*10^-19; % eV to Joules
V=10*e;
L=1.8*10^(-9)/2;
m=9.11e-31;
h_bar=(6.63e-34)/(2*pi);
a=(sqrt(2*m)*L)/(h_bar);
E=[0:0.01*e:V];
for i=1:length(E)
alpha_by_k(i)=sqrt((V-E(i))/E(i));
y1(i)=tan(a*sqrt(E(i)));
y2(i)=-cot(a*sqrt(E(i)));
end
%Back to eV
E=E/e;
y3=y1;
y4=y2;
alphaK=alpha_by_k;
%plot(E,y4)
figure('Name','V=10eV');
plot(E,alphaK,E,y3,E,y4);
%plot(E,y3);
xlim([0 10.2]);
ylim([-10 10]);
legend('alpha/k','tan','-cot');
This might help others.
  댓글 수: 2
David Goodmanson
David Goodmanson 2022년 2월 12일
편집: David Goodmanson 2022년 2월 12일
Hi Ashish,
If you are going for posterity I think it could be made clearer that e has the value 1 eV. Also it might help if you pointed out that E and V are negative, meaning that what you denote as E and V are actually abs(E) and abs(V); that what you denote by h is usually denoted by hbar; and that L is the half width of the well, not the full width.
As verification, if V is in eV and L is in angstroms (both V and L considered to be dimensionless numbers at this point), then the expected number of bound states is approximately
n = sqrt(V)*L/pi
(except there is always at least one bound state) which in this case gives n= 18, close to what the plot shows.
Ashish Kumar
Ashish Kumar 2022년 2월 12일
thanks for pointing out :)

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Graph and Network Algorithms에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by