How can I find 4 or more character pattern in number array

조회 수: 6 (최근 30일)
alicin
alicin 2013년 1월 23일
I have an array like this A=[1 2 3 2 5 12 3 9 12 3 5 6 3 2 5 11 10 9] (array size (1,275)
I am trying to find 4 or more character pattern in this array.
how can I do this?
  댓글 수: 6
Image Analyst
Image Analyst 2013년 1월 23일
So it's really a number pattern, not a character pattern.
alicin
alicin 2013년 1월 23일
yes number pattern.

댓글을 달려면 로그인하십시오.

답변 (6개)

Wayne King
Wayne King 2013년 1월 23일
편집: Wayne King 2013년 1월 23일
See Loren's blog here:
You can use strfind with an array of numbers
A = [1 2 3 2 5 12 3 9 12 3 5 6 3 2 5 11 10 9];
% find
B = [9 12 3];
K = strfind(A,B);
K is the starting index of the pattern in the array, A.
A(K:K+1+length(K))
  댓글 수: 7
Walter Roberson
Walter Roberson 2013년 1월 23일
Sounds very inefficient...
alicin
alicin 2013년 1월 23일
There is a song with music notes. 12 different notes. total 275 notes.
I am trying to find same note-groups in this song.

댓글을 달려면 로그인하십시오.


Laura Proctor
Laura Proctor 2013년 1월 23일
If you define the pattern that you're looking for as x, for example
x = [3 9 12 3]
then you can find the starting index value for this pattern by using the following code:
n = length(x);
ind = 1:length(A);
for k = 1:n
i1 = find(A==x(k));
ind = intersect(ind,i1-k+1);
end
  댓글 수: 4
alicin
alicin 2013년 1월 23일
there is no known pattern. I have to search all sub-arrays. so how can I do this?
Image Analyst
Image Analyst 2013년 1월 23일
That doesn't make sense. You have to be searching A for some pattern. Otherwise, you might as well just pick any 4 adjacent indexes from A at random.

댓글을 달려면 로그인하십시오.


Cedric
Cedric 2013년 1월 23일
편집: Cedric 2013년 1월 23일
And here is a funny solution:
A = [1 2 3 2 5 12 3 9 12 3 5 6 3 2 5 12 3 9] ; % Notes
p = [5 12 3 9] ; % Pattern
nA = numel(A) ; np = numel(p) ;
buffer = ~any(spdiags(repmat(A(:), 1, np), 0:np-1, nA, nA) - ...
spdiags(repmat(p, nA, 1), 0:np-1, nA, nA), 2) ;
loc = find(full(buffer(1:nA-np+1)))
This code gives loc = 5, 15.
Cheers,
Cedric

Image Analyst
Image Analyst 2013년 1월 23일
If you have the Image Processing Toolbox you can use normxcorr though it looks like Loren's method is simpler:
% Define sample data.
A=[1 2 3 2 5 12 3 9 12 3 5 6 3 2 5 11 10 9]
% Define the sequence of numbers we want to find.
patternToFind = [5 12 3 9]
% Compute the normalized cross correlation.
normCrossCorr = normxcorr2(patternToFind, A)
% Find index where the sequence starts.
% This is where the normalized cross correlation = 1.
startingIndexOfSequence = find(normCrossCorr >= 0.999999) - length(patternToFind) + 1

Walter Roberson
Walter Roberson 2013년 1월 23일
At each step, K,
conv(A(K+4:end), -1./A(K:K+3), 'valid')
should, I think, become within round-off of 0 at each point at which there is a match.
Or,
B = A(K:K+3);
T = A(K+4:end);
find(T(1:end-3) == B(1) & T(2:end-2) == B(2) & T(3:end-1) == B(3) & T(4:end) == B(4), 1, 'first')
There is a vectorized solution for the entire similarity search all at once, that involves constructing a comparison array (it might have to be multidimensional); it might become impractical for larger input vectors.

Jan
Jan 2013년 1월 24일
According to Wayne King's answer:
data = randi([1,12], 1, 275);
for k = 1:length(data) - 3
search = data(k:k+3);
match = k - 1 + strfind(data(k:end), search);
if length(match) > 1
fprintf('Match: [ ');
fprintf('%d ', search);
fprintf(']: \n ');
fprintf(' %d', match);
fprintf('\n');
end
end

카테고리

Help CenterFile Exchange에서 Matrix Indexing에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by