yoloにおける学習精度の違いについて

조회 수: 5 (최근 30일)
HY
HY 2020년 7월 28일
댓글: Kenta 2020년 7월 29일
MATLABにある,yolo v2深層学習を用いたオブジェクトの検出(https://jp.mathworks.com/help/deeplearning/examples/object-detection-using-yolo-v2.html?s_tid=srchtitle)のdoT rainingをtrueにして、全く同じオプションで学習させました。結果、学習に3分かかり、認識精度は0.89952になりました。 しかし、ドキュメンテーションには、学習に7分かかり、認識精度は0.91277になっています。 学習時間は、スペックによって変わってくるのはわかりますが、認識精度が変わってしまう理由がわかりません。 自分の場合、精度が落ちているわけですが、もしこれが複数の物体かつ多数の学習データの場合、もっと認識精度が落ちてしまう可能性があると言うことでしょうか。 宜しくお願い致します。

채택된 답변

Kenta
Kenta 2020년 7월 28일
重みの初期値など多くのランダムな要素を含むので同じコードでも精度が変わることはあります。
また、対象が多数になったりと、タスクが複雑になればその分精度も下がることになります。
  댓글 수: 3
HY
HY 2020년 7월 29일
すみません、なぜかコメントの採用ボタン押すとエラーが発生してしまいます。
後ほど、もう一度試してみます。よろしくお願いいたします。
Kenta
Kenta 2020년 7월 29일
はい、お役にたてたようでよかったです!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!