Problems with kmeans clustering

조회 수: 6 (최근 30일)
sam  CP
sam CP 2017년 3월 31일
댓글: sam CP 2017년 4월 3일
OI have used the following code to segment the attached image. But each iteration on the same image shows different result. How can i solve this by using rng('default'); ?
  댓글 수: 2
Adam
Adam 2017년 3월 31일
You should just need to explicitly set the seed (either to 'default' I guess or to any seed of your choice) before each call to kmeans if you want the same result each time.
sam  CP
sam CP 2017년 3월 31일
편집: sam CP 2017년 3월 31일
%k-means clustering algorithm
imData = reshape(Y,[],1);
imData = double(imData);
[IDX nn] = kmeans(imData,'default');
imIDX = reshape(IDX,size(Y));
figure, imshow(imIDX,[]),title('Image after applying k-means Clustering Algorithm');
Where can i apply the rng('default'); ?

댓글을 달려면 로그인하십시오.

채택된 답변

the cyclist
the cyclist 2017년 3월 31일
편집: the cyclist 2017년 3월 31일
Looking at your code, you should be able to put the line
rng('default')
literally anywhere before the call to kmeans, because you do not call any other random number functions. But the safest bet might be to call it in the line just before the call to kmeans, in case you do something differently later.
But, also, I don't think you put 'default' in the actual kmeans call. So it should be like this ...
%k-means clustering algorithm
imData = reshape(Y,[],1);
imData = double(imData);
rng('default')
[IDX nn] = kmeans(imData);
imIDX = reshape(IDX,size(Y));
figure, imshow(imIDX,[]),title('Image after applying k-means Clustering Algorithm');
  댓글 수: 10
Image Analyst
Image Analyst 2017년 3월 31일
Yeah, but let's put "works" in quotation marks because kmeans() is not a good method for finding brain tumors. Imagine what your algorithm would find for class 4 if there were no tumor present, or a very small one. Yeah, see what I mean?
sam  CP
sam CP 2017년 4월 3일
I have already found that the kmeans clustering method can't be detect the tumor when it is very small.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by